In humans, the circulating pool of mycobacteria-reactive Vγ9Vδ2+ T cells is expanded with age and may contribute to Mycobacterium tuberculosis immunosurveillance. We observed that two subsets of Vγ9Vδ2+ T cells could be identified on the basis of CD27 expression in immunocompetent adults, showing that functionally differentiated γδ T cells have lost CD27 expression. In contrast, the CD27−CD45RA−Vγ9Vδ2+ T cell subset of effector cells was absent in cord blood cells from healthy newborns and lacking in the peripheral blood from HIV-infected patients. Moreover, circulating Vγ9Vδ2+ T cell effectors were significantly reduced in patients with acute pulmonary tuberculosis, resulting in a reduced frequency of IFN-γ-producing cells after stimulation with nonpeptidic mycobacterial ligands. These observations indicate that monitoring and boosting γδ T cell effectors could be clinically relevant both in immunocompromised hosts and during active tuberculosis disease.
Vgamma9Vdelta2 T lymphocytes are broadly reactive against various intracellular pathogens and display both lytic and proliferative responses to human immunodeficiency virus (HIV)-infected cells. HIV infection of peripheral blood mononuclear cell cultures led to absolute increases in Vgamma9Vdelta2 T cells accompanied by decreased p24 levels. Strong gammadelta T cell activation with nonpeptidic mycobacterial phosphoantigens (TUBAg1 extract or synthetic isopentenyl pyrophosphate) resulted in potent inhibition of HIV replication through soluble released factors. Subsequent analyses showed that phosphoantigen-activated gammadelta T cells produced substantial amounts of beta-chemokines (macrophage inflammatory protein [MIP]-1alpha, MIP-1beta, and regulated-on-activation, normal T-cell-expressed and -secreted beta-chemokine [RANTES]), which represent the natural ligand for the CCR5 HIV coreceptor. Accordingly, anti-beta-chemokine antibodies neutralized the inhibition of monocytotropic HIV strains by gammadelta T cell-released factors. Moreover, a T-tropic HIV strain using the CXCR4 coreceptor for virus entry was potently inhibited. Together, these data reveal that phosphoantigen-activated gammadelta T cells are an important source of CC chemokines and may suppress HIV replication through cell-released antiviral factors.
Studies of host responses to infection have traditionally focused on the direct antimicrobial activity of effector molecules (antibodies, complement, defensins, reactive oxygen and nitrogen intermediates) and immunocytes (macrophages, lymphocytes, and neutrophils among others). The discovery of the systems for programmed cell death of eukaryotic cells has revealed a unique role for this process in the complex interplay between microorganisms and their cellular targets or responding immunocytes. In particular, cells of the monocyte/macrophage lineage have been demonstrated to undergo apoptosis following intracellular infection with certain pathogens that are otherwise capable of surviving within the hostile environment of the phagosome or which can escape the phagosome. Mycobacterium tuberculosis is a prototypical`intracellular parasite' of macrophages, and the direct induction of macrophage apoptosis by this organism has recently been reported from several laboratories. This paper reviews the current understanding of the mechanism and regulation of macrophage apoptosis in response to M. tuberculosis and examines the role this process plays in protective immunity and microbial virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.