Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli. In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor (BDNF), which represents one of the major mediators of neuroplasticity.
It is well accepted that events that interfere with the normal program of neuronal differentiation and brain maturation may be relevant for the etiology of psychiatric disorders, setting the stage for synaptic disorganization that becomes functional later in life. In order to investigate molecular determinants for these events, we examined the modulation of the neurotrophin brain-derived neurotrophic factor (BDNF) and the glutamate NMDA receptor following 24 h maternal separation (MD) on postnatal day 9. We found that in adulthood the expression of BDNF as well as of NR-2A and NR-2B, two NMDA receptor forming subunits, were significantly reduced in the hippocampus of MD rats whereas, among other structures, a slight reduction of NR-2A and 2B was detected only in prefrontal cortex. These changes were not observed acutely, nor in pre-weaning animals. Furthermore we found that in MD rats the modulation of hippocampal BDNF in response to an acute stress was altered, indicating a persistent functional impairment in its regulation, which may subserve a specific role for coping with challenging situations. We propose that adverse events taking place during brain maturation can modulate the expression of molecular players of cellular plasticity within selected brain regions, thus contributing to permanent alterations in brain function, which might ultimately lead to an increased vulnerability for psychiatric diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.