The operational flexibility of steam power plant is becoming more important as power generation becomes increasingly decentralized, with a growing contribution from renewable energy sources. In a power plant the control valve is a key component to guarantee the control of the plant of which is increasingly demanded to extend the operational capability. At specific operating conditions, the control valve could experience vibrations. In this paper, the physical phenomena of the unsteady aerodynamic excitation force have been investigated by means of CFD techniques. An in-house code was used to simulate the flow-induced vibration. Unsteady transonic 3D simulation generally requires huge computational effort. A novel unsteady quasi-3D approach has been developed and applied as pre-design tool to establish the qualitatively operational map of the valve and to detect the critical operational range, to reduce the number of detailed 3D simulations. The numerical results are compared with experimental test undertaken in the Central Research Institute of Electric Power Industry [4] and full 3D simulation performed with the commercial tool CFX, using the Scale-Adaptive Simulation (SaS) turbulence model. Different pressure drops at certain lift have been selected from the operational map and reproduced numerically. Different modes have been identified, from stochastic behavior with wide width of frequency to periodic flow with one dominant frequency. Results indicate good agreement between the predicted frequency and amplitude and benchmark experiments. The quasi-3D simulation is able to reproduce the principle behavior of the flow field for different drop of pressure and capture the different operational mode. Similar behaviour has been detected also for the selected operating condition in the full 3D analysis. In addition, flutter calculation of the downstream pipe is carried out. It has demonstrated that the implementation of oscillating discharge piping influences the amplitudes and frequency of the upstream flow region.
Control valves are one of the key steam turbine components that guarantee operational safety in a power plant. There are two aerodynamic aspects, which are the current focus for the development of Alstom’s valves. One is the reduction of the aerodynamic loss to increase the efficiency of the power plant. The other is operational flexibility, which is increasingly demanded to react faster to load requirements from the electric grid. This is becoming more important as power generation becomes increasingly decentralized, with a growing contribution from renewable energy sources. For this reason, a fast control loop is required for valve operation, which depends on an accurate linearization of the valve characteristic. In this paper the flow fields in an existing steam control valve have been analysed and subsequently optimized using CFD techniques. The approach specifically designed for drilled strainers is further illustrated. Following the validation of the baseline design with model testing, an improved diffuser has been designed using CFD analysis and the resulting performance benefit has been confirmed with further testing. The required grid frequency support requires control valve throttling. For this reason, an accurate prediction of the linearization table is extremely important to support the required response time limits. Further numerical work has been carried out with various opening positions of the valve, leading to an improved valve linearization characteristic. It is demonstrated that the numerical prediction of the linearization curve agrees very well with data obtained from operating power plants.
Control valves are one of the key steam turbine components that guarantee operational safety in a power plant. There are two aerodynamic aspects, which are the current focus for the development of Alstom's valves. One is the reduction of the aerodynamic loss to increase the efficiency of the power plant. The other is operational flexibility, which is increasingly required to react faster to load requirements from the electric grid. This is becoming more important as power generation becomes increasingly decentralized, with a growing contribution from renewable energy sources. For this reason, a fast control loop is required for valve operation, which depends on an accurate linearization of the valve characteristic. In this paper the flow fields in an existing steam control valve have been analyzed and subsequently optimized using CFD techniques. The approach specifi cally designed for drilled strainers is further illustrated. Following the validation of the baseline design with model testing, an improved diffuser has been designed using CFD analysis and the resulting performance benefit has been confirmed with further testing. The grid frequency support requires control valve throttling. For this reason, an accurate prediction of the linearization table is extremely important to support the required response time limits. Further numerical work has been carried out with various opening positions o f the valve, leading to an improved valve linearization characteristic. It is demonstrated that the numerical prediction of the linearization curve agrees very well with data obtained from operating power plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.