a b s t r a c tWe present a mathematical framework for constructing and analyzing parallel algorithms for lattice kinetic Monte Carlo (KMC) simulations. The resulting algorithms have the capacity to simulate a wide range of spatio-temporal scales in spatially distributed, non-equilibrium physiochemical processes with complex chemistry and transport micro-mechanisms. Rather than focusing on constructing exactly the stochastic trajectories, our approach relies on approximating the evolution of observables, such as density, coverage, correlations and so on. More specifically, we develop a spatial domain decomposition of the Markov operator (generator) that describes the evolution of all observables according to the kinetic Monte Carlo algorithm. This domain decomposition corresponds to a decomposition of the Markov generator into a hierarchy of operators and can be tailored to specific hierarchical parallel architectures such as multi-core processors or clusters of Graphical Processing Units (GPUs). Based on this operator decomposition, we formulate parallel Fractional step kinetic Monte Carlo algorithms by employing the Trotter Theorem and its randomized variants; these schemes, (a) are partially asynchronous on each fractional step time-window, and (b) are characterized by their communication schedule between processors.The proposed mathematical framework allows us to rigorously justify the numerical and statistical consistency of the proposed algorithms, showing the convergence of our approximating schemes to the original serial KMC. The approach also provides a systematic evaluation of different processor communicating schedules. We carry out a detailed benchmarking of the parallel KMC schemes using available exact solutions, for example, in Isingtype systems and we demonstrate the capabilities of the method to simulate complex spatially distributed reactions at very large scales on GPUs. Finally, we discuss work load balancing between processors and propose a re-balancing scheme based on probabilistic mass transport methods.
In this paper we study from a numerical analysis perspective the Fractional Step Kinetic Monte Carlo (FS-KMC) algorithms proposed in [1] for the parallel simulation of spatially distributed particle systems on a lattice. FS-KMC are fractional step algorithms with a time-stepping window ∆t, and as such they are inherently partially asynchronous since there is no processor communication during the period ∆t. In this contribution we primarily focus on the error analysis of FS-KMC algorithms as approximations of conventional, serial kinetic Monte Carlo (KMC). A key aspect of our analysis relies on emphasizing a goal-oriented approach for suitably defined macroscopic observables (e.g., density, energy, correlations, surface roughness), rather than focusing on strong topology estimates for individual trajectories.One of the key implications of our error analysis is that it allows us to address systematically the processor communication of different parallelization strategies for KMC by comparing their (partial) asynchrony, which in turn is measured by their respective fractional time step ∆t for a prescribed error tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.