Coligation of the Fc receptor on B cells, Fc gamma RIIB1, with the B cell antigen receptor (BCR) leads to abortive BCR signaling. Here it was shown that the Fc gamma RIIB1 recruits the phosphotyrosine phosphatase PTP1C after BCR coligation. This association is mediated by the binding of a 13-amino acid tyrosine-phosphorylated sequence to the carboxyl-terminal Src homology 2 domain of PTP1C and activates PTP1C. Inhibitory signaling and PTP1C recruitment are dependent on the presence of the tyrosine within the 13-amino acid sequence. Inhibitory signaling mediated by Fc gamma RIIB1 is deficient in motheaten mice which do not express functional PTP1C. Thus, PTP1C is an effector of BCR-Fc gamma RIIB1 negative signal cooperativity.
Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Recent evidence shows the involvement of reactive oxygen species (ROS) in the mitogenic cascade initiated by the tyrosine kinase receptors of several growth factor peptides. We have asked whether also the vascular endothelial growth factor (VEGF) utilizes ROS as messenger intermediates downstream of the VEGF receptor-2 (VEGFR-2)/KDR receptor given that the proliferation of endothelial cells during neoangiogenesis is physiologically regulated by oxygen and likely by its derivative species. In porcine aortic endothelial cells stably expressing human KDR, receptor activation by VEGF is followed by a rapid increase in the intracellular generation of hydrogen peroxide as revealed by the peroxidesensitive probe dichlorofluorescein diacetate. Genetic and pharmacological studies suggest that such oxidant burst requires as upstream events the activation of phosphatidylinositol 3-kinase and the small GTPase Rac-1 and is likely initiated by lipoxygenases. Interestingly, ROS generation in response to VEGF is not blocked but rather potentiated by endothelial nitricoxide synthase inhibitors diphenyleneiodonium and N G methyl-L-arginine, ruling out the possibility of nitric oxide being the oxidant species here detected in VEGFstimulated cells. Inhibition of KDR-dependent generation of ROS attenuates early signaling events including receptor autophosphorylation and binding to a phospholipase C-␥-glutathione S-transferase fusion protein. Moreover, catalase, the lipoxygenase inhibitor nordihydroguaiaretic acid, the synthetic ROS scavenger EUK-134, and phosphatidylinositol 3-kinase inhibitor wortmannin all reduce ERK phosphorylation in response to VEGF, and antioxidants prevent VEGF-dependent mitogenesis. Finally, cell culture and stimulation in a nearly anoxic environment mimic the effect of ROS scavenger on receptor and ERK phosphorylation, reinforcing the idea that ROS are necessary components of the mitogenic signaling cascade initiated by KDR. These data identify ROS as a new class of intracellular angiogenic mediators and may represent a potential premise for new antioxidant-based antiangiogenic therapies.
According to a "canonical" view, reactive oxygen species (ROS) positively contribute, in different ways, to carcinogenesis and to malignant progression of tumor cells: they drive genomic damage and genetic instability, transduce, as signaling intermediates, mitogenic and survival inputs by growth factor receptors and adhesion molecules, promote cell motility and shape the tumor microenvironment by inducing inflammation/repair and angiogenesis. Chemopreventive and tumor-inhibitory effects of endogenous, diet-derived or supplemented antioxidants largely support this notion. However, emerging lines of evidence indicates that tumor cells also need to defend themselves from oxidative damage in order to survive and successfully spread at distance. This "heresy" has recently received important impulse from studies on the role of antioxidant capacity in cancer stem cells self-renewal and resistance to therapy; additionally, the transforming activity of some oncogenes has been unexpectedly linked to their capacity to maintain elevated intracellular levels of reduced glutathione (GSH), the principal redox buffer. These studies underline the importance of cellular antioxidant capacity in metastasis, as the result of a complex cell program involving enhanced motility and a profound change in energy metabolism. The glycolytic switch (Warburg effect) observed in malignant tissues is triggered by mitochondrial oxidative damage and/or activation of redox-sensitive transcription factors, and results in an increase of cell resistance to oxidants. On the other hand, cytoskeleton rearrangement underlying cell motile and tumor-aggressive behavior use ROS as intermediates and are therefore facilitated by oxidative stress. Along this line of speculation, we suggest that metastasis represents an integrated strategy for cancer cells to avoid oxidative damage and escape excess ROS in the primary tumor site, explaning why redox signaling pathways are often up-regulated in malignancy and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.