Psychological distress is a common consequence of breast cancer diagnosis and treatment and could further exacerbate therapy side effects. Interventions increasing treatment tolerance are crucial to improve both patients' quality of life and adherence to therapies. Virtual reality (VR) has emerged as an effective distraction tool for different medical procedures. Here, we assessed the efficacy of immersive and interactive VR in alleviating chemotherapy‐related psychological distress in a cohort of Italian breast cancer patients, also comparing its effects with those of music therapy (MT). Thirty patients were included in the VR group, 30 in the MT group, and 34 in the control group, consisting of patients receiving standard care during chemotherapy. Our data suggest that both VR and MT are useful interventions for alleviating anxiety and for improving mood states in breast cancer patients during chemotherapy. Moreover, VR seems more effective than MT in relieving anxiety, depression, and fatigue.
The oncoprotein of simian virus-40, SV40 large T-antigen (Tag), is reported to target and to inactivate growth suppressive proteins such as the retinoblastoma family and p53 (ref. 4, 5), leading to transformation of human cell lines in vitro, tumor production in rodents, and detection of Tag in several human cancers including mesotheliomas. The retinoblastoma family contains three members, pRb, p107 and pRb2/p130 (ref. 9), that are phosphorylated in a cell cycle-dependent manner, have cell growth suppressive properties and bind to specific members of the E2F family and various cyclins. Even though mesotheliomas are among the most aggressive human cancers, alterations of important cell-cycle "controllers," such as the Rb family genes, have never been reported in these tumors. We found the presence of SV40-like sequences in 86% of 35 archival specimens of mesothelioma. We also demonstrated that SV40 Tag, isolated from frozen biopsies of human mesothelioma, binds each of the retinoblastoma family proteins, pRb, p107 and pRb2/p130, in four of four specimens. We propose that the tumorigenic potential of SV40 Tag in some human mesotheliomas may arise from its ability to interact with and thereby inactivate several tumor and/or growth suppressive proteins.
SUMMARY An immunoperoxidase staining technique was used for detecting three major iron binding proteins (ferritin, transferrin and lactoferrin) in 40 breast carcinoma cases and six benign breast proliferative lesions.Ferritin staining was detected mainly in connectival stroma and in histiocytes surrounding neoplastic cells. Few and faint ferritin positivities were also detected in neoplastic cells of 20 carcinoma cases. Transferrin was found inconsistently in myoepithelial cells surrounding normal ductules, or around neoplastic ducts of ductal in situ carcinoma. In eight carcinoma cases, transferrin staining was also positive in neoplastic cells. Lactoferrin was detected only in normal breast epithelial cells and in benign breast proliferative lesions.These immunohistochemical findings may suggest that raised serum ferritin concentrations in breast carcinoma patients might be attributed to stromal reaction rather than to tumour synthesis.
The Rb2/p130 protein has been shown to have a high sequence homology with the retinoblastoma gene product (pRb), one of the most well-characterized tumor suppressor genes, and with pRB-related p107, especially in their conserved pocket domains, which display a primary role in the function of these proteins. In this study, we report on the biochemical and immunocytochemical characterization of the Rb2/p130 protein, using a polyclonal antibody developed against its "spacer" region included in the pocket domain of the whole protein. We show that pRb2/p130 is a phosphoprotein located at the nuclear level and that its phosphorylation pathway can be dramatically reduced by phosphatase treatment. Moreover pRb2/p130 with p107, is one of the major targets of the E1A viral oncoprotein-associated kinase activity, showing a phosphorylation pattern which is modulated during the cell cycle, reaching a peak of activation at the onset of S-phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.