To meet low power requirements for Internet of Things (IoT) applications, the power dissipation of RF transceivers must be very low. As the Low Noise Amplifier (LNA) is one of the most energy consuming parts of an RF receiver, its power optimization is necessary for modern IoT devices. This work presents a 170 $\mu$W LNA capable of operating at 2.4 GHz when powered by a 0.4 V source. It is based on an inverter-based amplifier with improved gate bias voltage and automatic forward bulk biasing to operate at the moderated channel inversion level. A biasing metric is explored to analyze the best dimensions and bulk bias voltages for the NMOS transistor. Post-layout simulation results shown a 2.8 dB noise and competitive specification values compared to the state-of-the-art low-voltage LNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.