BackgroundTo evaluate the effectiveness and safety of technology-assisted rehabilitation following total hip/knee replacement (THR/TKR).MethodsSix electronic databases were searched without language or time restrictions for relevant studies: MEDLINE, EMBASE, Cochrane Library, CINAHL, SPORTDiscus, Physiotherapy Evidence Database (PEDro); from inception to November 7th, 2018. Two reviewers independently applied inclusion criteria to select eligible randomised controlled trials (RCTs) that investigated the effectiveness of technology-based interventions, compared with usual care or no intervention for people undergoing THR/TKR. Two reviewers independently extracted trial details (e.g. patients’ profile, intervention, outcomes, attrition and adverse events). Study methodological quality was assessed using the PEDro scale. Quality of evidence was critically appraised using the Grading of Recommendations, Assessment, Development and Evaluation approach.ResultsWe identified 21 eligible studies assessing telerehabilitation, game- or web-based therapy. There were 17 studies (N = 2188) in post-TKR rehabilitation and 4 studies (N = 783) in post-THR rehabilitation. Compared to usual care, technology-based intervention was more effective in reducing pain (mean difference (MD): − 0.25; 95% confidence interval (CI): − 0.48, − 0.02; moderate evidence) and improving function measured with the timed up-and-go test (MD: -7.03; 95% CI: − 11.18, − 2.88) in people undergoing TKR. No between-group differences were observed in rates of hospital readmissions or treatment-related adverse events (AEs) in those studies.ConclusionThere is moderate-quality of evidence showed technology-assisted rehabilitation, in particular, telerehabilitation, results in a statistically significant improvement in pain; and low-quality of evidence for the improvement in functional mobility in people undergoing TKR. The effects were however too small to be clinically significant. For THR, there is very limited low-quality evidence shows no significant effects.
Background and objective Approximately half of the population will experience either low back pain or neck pain, at some point in their lives. Previous studies suggest that people with diabetes are more likely to present with chronic somatic pain, including shoulder, knee and spinal pain. This study aimed to systematically review and appraise the literature to explore the magnitude as well as the nature of the association between diabetes and back, neck, or spinal (back and neck) pain. Databases and data treatment A systematic search was performed using the Medline, CINAHL, EMBASE, and Web of Science electronic databases. Studies which assessed the association between diabetes and back or neck pain outcomes, in participants older than 18 years of age were included. Two independent reviewers extracted data on the incidence of pain and reported associations. Results Eight studies were included in the meta-analyses. Meta-analyses showed that people with diabetes are more likely to report low back pain [5 studies; n: 131,431; odds ratio (OR): 1.35; 95% Confidence Interval (CI): 1.20 to 1.52; p<0.001] and neck pain (2 studies; n: 6,560; OR: 1.24; 95% CI: 1.05 to 1.47; p = 0.01) compared to those without diabetes. Results from one longitudinal cohort study suggested that diabetes is not associated with the risk of developing future neck, low back or spinal pain. Conclusions Diabetes is associated with low back and neck individually, and spinal pain. The longitudinal analysis showed no association between the conditions. Our results suggest that diabetes co-exists with back pain; however, a direct causal link between diabetes and back pain was not established. Systematic review registration PROSPERO registration CRD42016050738 .
The urethral muscle of diabetic pregnant rats is affected by long-term mild diabetes and short-term severe diabetes, which plays a crucial role in the pathogenesis of pelvic floor disorders. We hypothesized that muscles outside the pelvis are subject to similar changes. The current study aimed at analyzing the effects of long-term mild and short-term severe diabetes on the structure and ultrastructure of fiber muscles and collagen in rats' rectus abdominis (RA) muscle. Therefore, the RA muscle of virgin, pregnant, long-term mild diabetic, short-term severe diabetic, long-term mild diabetic pregnant and short-term severe diabetic pregnant 3-month-old Wistar rats were collected. The structure was analyzed by picrosirius red staining, immunohistochemistry for fast and slow muscle fibers and transmission electron microscopy. We investigated two levels of STZ- induced diabetes: long-term mild diabetes (blood glucose level: 120–200 mg/dL) and short-term severe diabetes (blood glucose level >300 mg/dL). Long-term mild diabetic pregnant and short-term severe diabetic pregnant rats had decreased fast fibers and increased slow fibers, disrupted areas of sarcomere, intermyofibrillar mitochondria and myelin figures in the RA muscle. Both groups enabled us to analyze the specific influence of pregnancy, separately from diabetes. The current study demonstrated that diabetes and pregnancy induced intramuscular transformation and reorganization of RA muscle with a switch of fiber type adjusting their architecture according to intensity and duration of hyperglycemic insult within pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.