BackgroundCADe and CADx systems for the detection and diagnosis of lung cancer have been important areas of research in recent decades. However, these areas are being worked on separately. CADe systems do not present the radiological characteristics of tumors, and CADx systems do not detect nodules and do not have good levels of automation. As a result, these systems are not yet widely used in clinical settings.MethodsThe purpose of this article is to develop a new system for detection and diagnosis of pulmonary nodules on CT images, grouping them into a single system for the identification and characterization of the nodules to improve the level of automation. The article also presents as contributions: the use of Watershed and Histogram of oriented Gradients (HOG) techniques for distinguishing the possible nodules from other structures and feature extraction for pulmonary nodules, respectively. For the diagnosis, it is based on the likelihood of malignancy allowing more aid in the decision making by the radiologists. A rule-based classifier and Support Vector Machine (SVM) have been used to eliminate false positives.ResultsThe database used in this research consisted of 420 cases obtained randomly from LIDC-IDRI. The segmentation method achieved an accuracy of 97 % and the detection system showed a sensitivity of 94.4 % with 7.04 false positives per case. Different types of nodules (isolated, juxtapleural, juxtavascular and ground-glass) with diameters between 3 mm and 30 mm have been detected. For the diagnosis of malignancy our system presented ROC curves with areas of: 0.91 for nodules highly unlikely of being malignant, 0.80 for nodules moderately unlikely of being malignant, 0.72 for nodules with indeterminate malignancy, 0.67 for nodules moderately suspicious of being malignant and 0.83 for nodules highly suspicious of being malignant.Conclusions From our preliminary results, we believe that our system is promising for clinical applications assisting radiologists in the detection and diagnosis of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.