Natural antisense transcripts (NATs) are a class of genes whose role in controlling gene expression is becoming more and more relevant. We describe the identification of eight novel mouse NATs associated with transcription factors (Pax6, Pax2, Six3, Six6, Otx2, Crx, Rax and Vax2) that play an important role in eye development and function. These newly identified NATs overlap with the mature processed mRNAs or with the primary unprocessed transcript of their corresponding sense genes, are predicted to represent either protein coding or non-coding RNAs and undergo extensive alternative splicing. Expression studies, by both RT-PCR and RNA in situ hybridization, demonstrate that most of these NATs, similarly to their sense counterparts, display a specific or predominant expression in the retina, particularly at postnatal stages. We found a significant reduction of the expression levels of one of these NATs, Vax2OS (Vax2 opposite strand) in a mouse mutant carrying the inactivation of Vax2, the corresponding sense gene. In addition, we overexpressed another NAT, CrxOS, in mouse adult retina using adeno-associated viral vectors and we observed a significant decrease in the expression levels of the corresponding sense gene, Crx. These results suggest that these transcripts are functionally related to their sense counterparts and may play an important role in regulating the molecular mechanisms that underlie eye development and function in both physiological and pathological conditions.
Long noncoding RNAs (lncRNAs) are emerging as regulators of many basic cellular pathways. Several lncRNAs are selectively expressed in the developing retina, although little is known about their functional role in this tissue. Vax2os1 is a retina-specific lncRNA whose expression is restricted to the mouse ventral retina. Here we demonstrate that spatiotemporal misexpression of Vax2os1 determines cell cycle alterations in photoreceptor progenitor cells. In particular, the overexpression of Vax2os1 in the developing early postnatal mouse retina causes an impaired cell cycle progression of photoreceptor progenitors toward their final committed fate and a consequent delay of their differentiation processes. At later developmental stages, this perturbation is accompanied by an increase of apoptotic events in the photoreceptor cell layer, in comparison with control retinas, without affecting the proper cell layering in the adult retina. Similar results are observed in mouse photoreceptor-derived 661W cells in which Vax2os1 overexpression results in an impairment of the cell cycle progression rate and cell differentiation. Based on these results, we conclude that Vax2os1 is involved in the control of cell cycle progression of photoreceptor progenitor cells in the ventral retina. Therefore, we propose Vax2os1 as the first example of lncRNA that acts as a cell cycle regulator in the mammalian retina during development.
SUMMARYVax2 is an eye-specific homeobox gene, the inactivation of which in mouse leads to alterations in the establishment of a proper dorsoventral eye axis during embryonic development. To dissect the molecular pathways in which Vax2 is involved, we performed a transcriptome analysis of Vax2 -/-mice throughout the main stages of eye development. We found that some of the enzymes involved in retinoic acid (RA) metabolism in the eye show significant variations of their expression levels in mutant mice. In particular, we detected an expansion of the expression domains of the RA-catabolizing enzymes Cyp26a1 and Cyp26c1, and a downregulation of the RA-synthesizing enzyme Raldh3. These changes determine a significant expansion of the RA-free zone towards the ventral part of the eye. At postnatal stages of eye development, Vax2 inactivation led to alterations of the regional expression of the cone photoreceptor genes Opn1sw (S-Opsin) and Opn1mw (M-Opsin), which were significantly rescued after RA administration. We confirmed the above described alterations of gene expression in the Oryzias latipes (medaka fish) model system using both Vax2 gain-and loss-of-function assays. Finally, a detailed morphological and functional analysis of the adult retina in mutant mice revealed that Vax2 is necessary for intraretinal pathfinding of retinal ganglion cells in mammals. These data demonstrate for the first time that Vax2 is both necessary and sufficient for the control of intraretinal RA metabolism, which in turn contributes to the appropriate expression of cone opsins in the vertebrate eye.
PurposeMutations in the EYS gene are a common cause of autosomal recessive retinitis pigmentosa (arRP), yet the role of the EYS protein in humans is presently unclear. The aim of this study was to investigate the isoform structure, expression and potential function of EYS in the mammalian retina in order to better understand its involvement in the pathogenesis of arRP.MethodsTo achieve the objective, we examined the expression of mRNA transcripts of EYS isoforms in human tissues and cell lines by RT-PCR. We also investigated the localisation of EYS in cultured cells and retinal cryo-sections by confocal fluorescence microscopy and Western blot analysis.ResultsRT-PCR analysis confirmed that EYS has at least four isoforms. In addition to the previously reported EYS isoforms 1 and 4, we present the experimental validation of two smaller variants referred to as EYS isoforms 2 and 3. All four isoforms are expressed in the human retina and Y79 cells and the short variants were additionally detected in the testis. Immunofluorescent confocal microscopy and Western blot analysis revealed that all EYS isoforms preferentially localise to the cytoplasm of Y79 and HeLa cells. Moreover, an enrichment of the endogenous protein was observed near the centrosomes in Y79 cells. Interestingly, EYS was observed at the ciliary axoneme in Y79 ciliated cells. In macaque retinal cryosections, EYS was found to localise in the region of the photoreceptor ciliary axoneme in both rods and cones as well as in the cytoplasm of the ganglion cells.ConclusionThe results obtained in this study lead us to speculate that, in photoreceptor cells, EYS could be a protein involved in maintaining the stability of the ciliary axoneme in both rods and cones. The variability of its isoform structure suggests that other roles are also possible and yet to be established.
A new polyacrylamide gel isoelectric focusing (PAGIEF) technique has been developed that allows rapid and reliable identification of Apolipoprotein E (APOE) phenotypes directly from plasma or serum without any prior treatment. This method was used to determine the APOE phenotypes in samples from Central and Southern Italy, Sicily, and Sardinia. The frequencies observed for the APOE*2, APOE*3, and APOE*4 alleles in Central and Southern Italy (Sicily included) were similar (0.066, 0.851, 0.083 and 0.056, 0.858, 0.085 respectively) though lower APOE*4 frequencies were found in the more southern regions. The Sardinian population showed APOE gene frequencies (APOE*2 = 0.050, APOE*3 = 0.898, APOE*4 = 0.052) to be significantly different from those of the rest of Italy owing to the low APOE*4 frequency, the lowest among Caucasian populations. The frequencies were compared with those found in other European populations. A clear cut North-South decreasing cline was found for APOE*4 allele frequencies and an opposite trend was found for APOE*3 frequencies. The overall dispersion of European populations as determined by the three APOE allele frequencies was graphically represented using coordinate analysis. The tendency of the APOE*4 frequency to decline with latitude both at the Italian and at the European level was discussed with reference to similar trends observed for dietary habits (saturated fat intake).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.