The metabolic fate of dietary anthocyanins (ACN) has not been fully clarified in humans. In all previous studies, the proportion of total ACN absorbed and excreted in urine was <1% intake. This study aimed to elucidate the human metabolism of cyanidin-glucosides (CyG) contained in blood orange juice (BOJ). One liter of BOJ, containing 71 mg CyG, was consumed by 6 healthy, fasting volunteers. Blood, urine, and fecal samples were collected at baseline and at different times up to 24 h after juice consumption. The content of native CyG, glucuronidated/methylated derivatives, and various phenolic acids was determined by HPLC/MS/MS. The serum maximal concentration of cyanidin-3-glucoside (Cy-3-glc) was 1.9 +/- 0.6 nmol/L and that of protocatechuic acid (PCA) was 492 +/- 62 nmol/L at 0.5 h and 2 h after juice consumption, respectively. The calculated total amounts in plasma corresponded for Cy-3-glc to 0.02% and for PCA to 44% of CyG ingested. CyG and glucuronidated/methylated metabolites, but not PCA, were detected in urine. ACN recovered in 24-h urine collections represented approximately 1.2% of the ingested dose. Both CyG (1.90 +/- 0.04 nmol/g) and PCA (277 +/- 0.2 nmol/g) were recovered in 24-h fecal samples. Data explained the metabolic fate of 74% of BOJ ACN. PCA was for the first time, to our knowledge, identified in humans as a CyG metabolite, accounting for almost 73% of ingested CyG. A high concentration of PCA may explain the short-term increased plasma antioxidant activity observed after intake of cyanidin-rich food and it can also contribute to the numerous health benefits attributed to dietary ACN consumption.
Chitin and lignin, by-products of fishery and plant biomass, can be converted to innovative high value bio- and eco-compatible materials. On the nanoscale, high antibacterial, anti-inflammatory, cicatrizing and anti-aging activity is obtained by controlling their crystalline structure and purity. Moreover, electropositive chitin nanofibrlis (CN) can be combined with electronegative nanolignin (NL) leading to microcapsule-like systems suitable for entrapping both hydrophilic and lipophilic molecules. The aim of this study was to provide morphological, physico-chemical, thermogravimetric and biological characterization of CN, NL, and CN-NL complexes, which were also loaded with glycyrrhetinic acid (GA) as a model of a bioactive molecule. CN-NL and CN-NL/GA were thermally stable up to 114 °C and 127 °C, respectively. The compounds were administered to in vitro cultures of human keratinocytes (HaCaT cells) and human mesenchymal stromal cells (hMSCs) for potential use in skin contact applications. Cell viability, cytokine expression and effects on hMSC multipotency were studied. For each component, CN, NL, CN-NL and CN-NL/GA, non-toxic concentrations towards HaCaT cells were identified. In the keratinocyte model, the proinflammatory cytokines IL-1α, IL-1 β, IL-6, IL-8 and TNF-α that resulted were downregulated, whereas the antimicrobial peptide human β defensin-2 was upregulated by CN-LN. The hMSCs were viable, and the use of these complexes did not modify the osteo-differentiation capability of these cells. The obtained findings demonstrate that these biocomponents are cytocompatible, show anti-inflammatory activity and may serve for the delivery of biomolecules for skin care and regeneration.
Toll-like receptors (TLRs) are crucial players in the innate immune response to microbial invaders. The lipophilic yeast Malassezia furfur has been implicated in the triggering of scalp lesions in psoriasis. The aim of the present study was to assess the role of TLRs in the defence against M. furfur infection. The expression of the myeloid differentiation factor 88 (MyD88) gene, which is involved in the signalling pathway of many TLRs, was also analysed. In addition, a possible correlation of antimicrobial peptides of the beta-defensin family to TLRs was tested. Human keratinocytes infected with M. furfur and a variety of M. furfur-positive psoriatic skin biopsies were analysed by RT-PCR, for TLRs, MyD88, human beta-defensin 2 (HBD-2), HBD-3 and interleukin-8 (IL-8) mRNA expression. When keratinocytes were infected with M. furfur, an up-regulation for TLR2, MyD88, HBD-2, HBD-3 and IL-8 mRNA was demonstrated, compared to the untreated cells. The same results were obtained when psoriatic skin biopsies were analysed. The M. furfur-induced increase in HBD-2 and IL-8 gene expression is inhibited by anti-TLR2 neutralising antibodies, suggesting that TLR2 is involved in the M. furfur-induced expression of these molecules. These findings suggest the importance of TLRs in skin protection against fungi and the importance of keratinocytes as a component of innate immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.