OBJECTIVE: To investigate whether young rats respond to high-fat feeding through changes in energy efficiency and fuel partitioning at the level of skeletal muscle, to avoid obesity development. In addition, to establish whether the two mitochondrial subpopulations, which exist in skeletal muscle, ie subsarcolemmal and intermyofibrillar, are differently affected by high-fat feeding. DESIGN: Weaning rats were fed a low-fat or a high-fat diet for 15 days. MEASUREMENTS: Energy balance and lipid partitioning in the whole animal. State 3 and state 4 oxygen consumption rates in whole skeletal muscle homogenate. State 3 and state 4 oxygen consumption rates, membrane potential and uncoupling effect of palmitate in subsarcolemmal and intermyofibrillar mitochondria from skeletal muscle. RESULTS: Rats fed a high-fat diet showed an increased whole body lipid utilization. Skeletal muscle NAD-linked and lipid oxidative capacity significantly increased at the whole-tissue level, due to an increase in lipid oxidative capacity in subsarcolemmal and intermyofibrillar mitochondria and in NAD-linked activity only in intermyofibrillar ones. In addition, rats fed a highfat diet showed an increase in the uncoupling effect of palmitate in both the mitochondrial populations. CONCLUSIONS: In young rats fed a high-fat diet, skeletal muscle contributes to enhanced whole body lipid oxidation through an increased mitochondrial capacity to use lipids as metabolic fuels, associated with a decrease in energy coupling.
The objective of this paper is to evaluate adaptations in hepatic mitochondrial protein mass, function and efficiency in a rat model of high-fat diet-induced obesity and insulin resistance that displays several correlates to human obesity. Adult male rats were fed a high-fat diet for 7 weeks. Mitochondrial state 3 and state 4 respiratory capacities were measured in liver homogenate and isolated mitochondria by using nicotinamide adenine dinucleotide, flavin adenine dinucleotide and lipid substrates. Mitochondrial efficiency was evaluated by measuring proton leak kinetics. Mitochondrial mass was assessed by ultrastructural observations and citrate synthase (CS) activity measurements. Mitochondrial oxidative damage and antioxidant defence were also considered by measuring lipid peroxidation, aconitase and superoxide dismutase (SOD) specific activity. Whole body metabolic characteristics were obtained by measuring 24-h oxygen consumption (VO 2 ), carbon dioxide production (VCO 2 ), respiratory quotient (RQ) and nonprotein respiratory quotient (NPRQ), using indirect calorimetry with urinary nitrogen analysis. Whole body glucose homeostasis was assessed by measuring plasma insulin and glucose levels after a glucose load. Adult rats fed a high-fat diet for 7 weeks, exhibit not only obesity, insulin resistance and hepatic steatosis, but also reduced respiratory capacity and increased oxidative stress in liver mitochondria. Our present results indicate that alterations in the mitochondrial compartment induced by a high-fat diet are associated with the development of insulin resistance and ectopic fat storage in the liver. Our results thus fit in with the emerging idea that mitochondrial dysfunction can led to the development of metabolic diseases, such as obesity, type 2 diabetes mellitus and nonalcoholic steatohepatitis.
Liver mitochondrial compartment is highly affected by fructose feeding. The increased mitochondrial efficiency allows liver cells to burn less substrates to produce ATP for de novo lipogenesis and gluconeogenesis. In addition, increased lipogenesis gives rise to whole body and ectopic lipid deposition, and higher mitochondrial coupling causes mitochondrial oxidative stress.
The changes in metabolic efficiency, body composition, and nutrient partitioning induced by high-fat feeding were evaluated in adult rats (90 d of age). The alterations in serum free triiodothyronine, insulin, and leptin levels, as well as in hepatic and skeletal muscle metabolism, were also assessed. Rats were fed either a low-or a high-fat diet for 2 weeks. Relative to the low-fat feeding, energy intake and expenditure, as well as body-energy gain, lipid gain, and energetic efficiency, were increased by the high-fat feeding. Increased serum leptin levels accompanied these variations. A positive correlation between serum leptin levels and percentage of body fat was found in the rats fed the low-or high-fat diet, with a significant divergence between the slope of the regression lines. Furthermore, a negative correlation between serum leptin level and energy intake was found in the rats fed the low-fat diet, while a positive correlation was found in the rats fed the high-fat diet. Finally, the high-fat feeding decreased the hepatic and skeletal muscle mitochondrial oxidative capacity. It is concluded that, in adult rats, a nutritional factor such as a high level of fat in the diet induces obesity, leptin resistance, and impairment of mitochondrial capacity, all phenomena typical of unrestrained aged rats.Energy balance: Mitochondrial capacity: Triiodothyronine: Leptin
Objective: To investigate whether changes in body energy balance induced by long-term high-fat feeding in adult rats could be associated with modifications in energetic behaviour and oxidative stress of skeletal muscle subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondrial populations. Design: Adult rats were fed low-fat or high-fat diet for 7 weeks. Measurements: Body energy balance and composition analysis together with plasma insulin and glucose level determination in the whole animal. Oxidative capacity, basal and induced proton leaks as well as aconitase and superoxide dismutase activities in SS and IMF mitochondria from skeletal muscle. Results: High-fat fed rats exhibit increased body lipid content, as well as hyperinsulinemia, hyperglycaemia and higher plasma non-esterified fatty acids. In addition, SS mitochondria display lower respiratory capacity and a different behaviour of SS and IMF mitochondria is found in the prevention from oxidative damage. Conclusions: A deleterious consequence of decreased oxidative capacity in SS mitochondria from rats fed high-fat diet would be a reduced utilization of energy substrates, especially fatty acids, which may lead to intracellular triglyceride accumulation, lipotoxicity and insulin resistance development. Our results thus reveal a possible role for SS mitochondria in the impairment of glucose homeostasis induced by high-fat diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.