Four different hexahelicenes, 5-aza-hexahelicene (1), hexahelicene (2), 2-methyl-hexahelicene (3), and 2-bromo-hexahelicene (4), were prepared and their enantiomers, which are stable at r.t., were separated. Vibrational circular dichroism (VCD) spectra were measured for compound 1; for all the compounds, electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) spectra were recorded. Each type of experimental spectrum was compared with the corresponding theoretical spectrum, determined via Density Functional Theory (DFT). Following the recent papers by Nakai et al., this comparison allowed to identify some features related to the helicity and some other features typical of the substituent groups on the helical backbone. The Raman spectrum of compound 1 is also examined from this point of view
The typical design of chiral electroactive materials involves attaching chiral pendants to an electroactive polyconjugated backbone and generally results in modest chirality manifestations. Discussed herein are electroactive chiral poly-heterocycles, where chirality is not external to the electroactive backbone but inherent to it, and results from a torsion generated by the periodic presence of atropisomeric, conjugatively active biheteroaromatic scaffolds, (3,3'-bithianaphthene). As the stereogenic element coincides with the electroactive one, films of impressive chiroptical activity and outstanding enantiodiscrimination properties are obtained. Moreover, chirality manifestations can be finely and reversibly tuned by the electric potential, as progressive injection of holes forces the two thianaphthene rings to co-planarize to favor delocalization. Such deformations, revealed by CD spectroelectrochemistry, are elastic and reversible, thus suggesting a breathing system.
Herein we describe the synthesis, structure, and properties of chiral peropyrenes. Using p-terphenyl-2,2″,6,6″-tetrayne derivatives as precursors, chiral peropyrenes were formed after a 4-fold alkyne cyclization reaction promoted by triflic acid. Due to the repulsion of the two aryl substituents within the same bay region, the chiral peropyrene adopts a twisted backbone with an end-to-end twist angle of 28° that was unambiguously confirmed by X-ray crystallographic analysis. The chiral peropyrene products absorb and emit in the green region of the UV-visible spectrum. Circular dichroism spectroscopy shows strong Cotton effects (Δε = ±100 M cm at 300 nm). The Raman data shows the expected D-band along with a split G-band that is due to longitudinal and transversal G modes. This data corresponds well with the simulated Raman spectra of chiral peropyrenes. The chiral peropyrene products also display circularly polarized luminescence. The cyclization reaction mechanism and the enantiomeric composition of the peropyrene products are explained using DFT calculations. The inversion barrier for racemization was determined experimentally to be 29 kcal/mol and is supported by quantum mechanical calculations.
The new inherently chiral material shows outstanding chirality manifestations with chiral probes, as well as with circularly polarized light components and electron spins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.