Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth.
HDAC inhibitors (HDACi) exert beneficial effects in mdx mice, by promoting endogenous regeneration; however, the cellular determinants of HDACi activity on dystrophic muscles have not been determined. We show that fibroadipogenic progenitors (FAP) influence the regeneration potential of satellite cells during disease progression in mdx mice and mediate HDACi ability to selectively promote regeneration at early stages of disease. FAPs from young mdx mice promote, while FAPs from old mdx mice repress, satellite cell-mediated formation of myotubes. In young mdx mice HDACi inhibited FAP adipogenic potential, while enhancing their ability to promote differentiation of adjacent satellite cells, through upregulation of the soluble factor follistatin. By contrast, FAPs from old mdx mice were resistant to HDACi-mediated inhibition of adipogenesis and constitutively repressed satellite cell-mediated formation of myotubes. We show that transplantation of FAPs from regenerating young muscles restored HDACi ability to increase myofibre size in old mdx mice. These results reveal that FAPs are key cellular determinants of disease progression in mdx mice and mediate a previously unappreciated stage-specific beneficial effect of HDACi in dystrophic muscles.
The cellular and molecular processes leading to the establishment of the skeletal muscle lineage in the vertebrate are not well understood. The MyoD-related family of myogenic regulatory factors (MRFs) are expressed during somitogenesis although cells with myogenic capacity are present prior to gastrulation. We propose that regulatory genes exist that guide the skeletal muscle lineage during early development. In an effort to identify these regulatory genes, we performed a differential screening to isolate transcripts that are present in myogenic cells and in the embryo prior to MRF expression but absent in nonmyogenic fibroblasts. We report here the identification of Pw1. The Pw1 transcript is approximately 8.5 kb long and encodes a large protein containing 12 widespread C2H2 zinc fingers and 3 motifs containing periodic prolines and acidic residues. Consistent with the possibility that Pw1 is a transcription factor, we observe nuclear localization of the protein. Pw1 is strongly expressed upon gastrulation and subsequently becomes restricted to skeletal muscle and subregions of the central nervous system. Pw1 is initially expressed in all mesodermal cells early in development; however, its maintained expression in adult differentiated muscle suggests a specific role in the skeletal muscle lineage. Pw1 expression is cell cycle specific with levels highest during late M-phase. The gene is intronless which may facilitate transcription during cell division. At present, the precise function of Pw1 is not understood; however, we note that Pw1 maps to the proximal region of chromosome 7 near the axial segmentation mutant pudgy which shows severe perturbation of axial skeletal and muscle structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.