The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to riverine and atmospheric inputs of organic pollutants. Here, we report the results obtained during two east-west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where water and plankton samples were collected simultaneously. Both matrixes were analyzed for hexaclorochyclohexanes (HCHs), hexachlorobenzene (HCB), and 41 polychlorinated biphenyl (PCB) congeners. The comparison of the measured HCB and HCHs concentrations with previously reported dissolved phase concentrations suggests a temporal decline in their concentrations since the 1990s. On the contrary, PCB seawater concentrations did not exhibit such a decline, but show a significant spatial variability in dissolved concentrations with lower levels in the open Western and South Eastern Mediterranean, and higher concentrations in the Black, Marmara, and Aegean Seas and Sicilian Strait. PCB and OCPs (organochlorine pesticides) concentrations in plankton were higher at lower plankton biomass, but the intensity of this trend depended on the compound hydrophobicity (K(OW)). For the more persistent PCBs and HCB, the observed dependence of POP concentrations in plankton versus biomass can be explained by interactions between air-water exchange, particle settling, and/or bioaccumulation processes, whereas degradation processes occurring in the photic zone drive the trends shown by the more labile HCHs. The results presented here provide clear evidence of the important physical and biogeochemical controls on POP occurrence in the marine environment.
The overall objective of this work is to provide the first evaluation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) occurrence and deposition to Mediterranean open seawater. sigma2,3,7,8-PCDD/F air (gas+aerosol) concentrations over the Mediterranean Sea ranged from 60 to 1040 fg m(-3). The highest value (1555 fg m(-3)) was measured in a reference sample taken in the SW Black Sea. No consistent trend regarding the diel cycle of PCDD/Fs was observed. PCDD/Fs transported to the open sea waters from continental areas and across the Atlantic as well as ship emissions may be significant sources to the open Mediterranean. Seawater concentrations in the Mediterranean ranged from 42 to 64 fg L(-1). The sigma2,3,7,8-PCDD/F dry deposition fluxes in the Marmara and Black Seas (210 kg year(-1)) are from 2 to 55 times higher than dry fluxes in the Mediterranean Sea (4-156 kg year(-1)). Analysis of estimated diffusive air-water fluxes and air/water fugacity ratios show that a net volatilization of some PCDD congeners is feasible. However, evidence of a net absorption flux for the rest of PCDD/F is found. When both atmospheric deposition processes are considered together the open Mediterranean Sea is a net sink of PCDD/F, due to the importance of dry deposition fluxes of aerosol-bound PCDDFs.
Atmospheric concentrations and deposition fluxes of PCDD/F and PCB have been evaluated over a 1-year period in a Mediterranean coastal lagoon (Etang de Thau, France). Indicative PBDE air concentrations in the hot season are also reported in this work. ∑2,3,7,8-PCDD/Fs and ∑18PCBs (gas+particulate) air concentrations ranged from 67 to 1700 fg m(-3) and from 13 to 95 pg m(-3), respectively whereas ∑8PBDEs (gas+particulate) summer time levels varied from 158 to 230 pg m(-3). The PCDD/F and PCB atmospheric occurrence over Thau lagoon and subsequent inputs to the surface waters are determined by an assemble of factors, being the seasonality of atmospheric concentration, the air mass origin and meteorological conditions important drivers. Total (wet+dry) ∑2,3,7,8-PCDD/Fs and ∑18PCBs deposition fluxes to Thau Lagoon waters are 117 and 715 pg m(-2)d(-1), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.