Italian shows large phonetic and prosodic variations that depend on the geographical and dialectal area the speakers come from. The chapter explicitly focuses on the intonational variation occurring in Italian and offers (1) the key elements of a shared transcription system able to take this into account and (2) an overview of the intonation patterns of thirteen varieties, spoken in cities and towns located in various areas of the Italian peninsula, i.e. Milan, Turin, Florence, Siena, Pisa, Lucca, Rome, Pescara, Naples, Salerno, Cosenza, Bari, and Lecce. The main novelty of the chapter is the clear and explicit effort made in offering analyses and transcriptions that always keep in mind cross-variety comparison to finally facilitate cross-language comparison as well. Importantly, this is the first work on Italian in which this is systematically achieved on the basis of a wide and representative set of sentence types, apart from the number of varieties considered.
How conceptual knowledge is represented in the human brain remains to be determined. To address the differential role of low-level sensory-based and high-level abstract features in semantic processing, we combined behavioral studies of linguistic production and brain activity measures by functional magnetic resonance imaging in sighted and congenitally blind individuals while they performed a property-generation task with concrete nouns from eight categories, presented through visual and/or auditory modalities. Patterns of neural activity within a large semantic cortical network that comprised parahippocampal, lateral occipital, temporo-parieto-occipital and inferior parietal cortices correlated with linguistic production and were independent both from the modality of stimulus presentation (either visual or auditory) and the (lack of) visual experience. In contrast, selected modality-dependent differences were observed only when the analysis was limited to the individual regions within the semantic cortical network. We conclude that conceptual knowledge in the human brain relies on a distributed, modality-independent cortical representation that integrates the partial category and modality specific information retained at a regional level.
Feature-based descriptions of concepts produced by subjects in a property generation task are widely used in cognitive science to develop empirically grounded concept representations and to study systematic trends in such representations. This article introduces BLIND, a collection of parallel semantic norms collected from a group of congenitally blind Italian subjects and comparable sighted subjects. The BLIND norms comprise descriptions of 50 nouns and 20 verbs. All the materials have been semantically annotated and translated into English, to make them easily accessible to the scientific community. The article also presents a preliminary analysis of the BLIND data that highlights both the large degree of overlap between the groups and interesting differences. The complete BLIND norms are freely available and can be downloaded from http://sesia.humnet.unipi.it/blind_data .
Classical models of language localize speech perception in the left superior temporal and production in the inferior frontal cortex. Nonetheless, neuropsychological, structural and functional studies have questioned such subdivision, suggesting an interwoven organization of the speech function within these cortices. We tested whether sub-regions within frontal and temporal speech-related areas retain specific phonological representations during both perception and production. Using functional magnetic resonance imaging and multivoxel pattern analysis, we showed functional and spatial segregation across the left fronto-temporal cortex during listening, imagery and production of vowels. In accordance with classical models of language and evidence from functional studies, the inferior frontal and superior temporal cortices discriminated among perceived and produced vowels respectively, also engaging in the non-classical, alternative function – i.e. perception in the inferior frontal and production in the superior temporal cortex. Crucially, though, contiguous and non-overlapping sub-regions within these hubs performed either the classical or non-classical function, the latter also representing non-linguistic sounds (i.e., pure tones). Extending previous results and in line with integration theories, our findings not only demonstrate that sensitivity to speech listening exists in production-related regions and vice versa, but they also suggest that the nature of such interwoven organisation is built upon low-level perception.
The organization of semantic information in the brain has been mainly explored through category-based models, on the assumption that categories broadly reflect the organization of conceptual knowledge. However, the analysis of concepts as individual entities, rather than as items belonging to distinct superordinate categories, may represent a significant advancement in the comprehension of how conceptual knowledge is encoded in the human brain. Here, we studied the individual representation of thirty concrete nouns from six different categories, across different sensory modalities (i.e., auditory and visual) and groups (i.e., sighted and congenitally blind individuals) in a core hub of the semantic network, the left angular gyrus, and in its neighboring regions within the lateral parietal cortex. Four models based on either perceptual or semantic features at different levels of complexity (i.e., low- or high-level) were used to predict fMRI brain activity using representational similarity encoding analysis. When controlling for the superordinate component, high-level models based on semantic and shape information led to significant encoding accuracies in the intraparietal sulcus only. This region is involved in feature binding and combination of concepts across multiple sensory modalities, suggesting its role in high-level representation of conceptual knowledge. Moreover, when the information regarding superordinate categories is retained, a large extent of parietal cortex is engaged. This result indicates the need to control for the coarse-level categorial organization when performing studies on higher-level processes related to the retrieval of semantic information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.