We analysed the invasion history of two North American macrophytes (Elodea canadensis and E. nuttallii) in Italy, through an accurate census of all available herbarium and field records, dating between 1850 and 2019, and a rich literature collection describing the initial introduction and naturalisation phase that supports the results obtained by the occurrence records. Elodea canadensis arrived in Italy before 1866 and had two invasion phases, between the 1890s and 1920s and between the 1990s and 2000s; E. nuttallii, probably arrived in the 1970s, started invading in 2000 and the invasion is still ongoing. Botanical gardens and fish farming played a crucial role in dispersal and naturalisation of both species. The current invasion range of both species is centred in northern Italy, with scattered occurrences of E. canadensis in central and southern regions. River Po represents a dispersal barrier to the Mediterranean region and a strategic monitoring site to prevent the invasion in the peninsula. The study detects differences in the niches of the two species during the introduction and naturalisation phase and a habitat switch occurred after 1980 in E. canadensis and after 2000 in E. nuttallii, during their expansion phases. For E. canadensis the switch corresponds to the second invasion round. Further research can clarify whether the second invasion round is due to confusion of the recently introduced E. nuttallii with E. canadensis, to a cryptic introduction of a new genotype, to post-introduction evolution, or just to an increased scientific interest in biological invasions.
Identifying areas susceptible to invasion by an alien species is a strategy of prevention. We used national herbaria and global databases to assess the invasion trends of the two aquatic invasive species Ludwigia hexapetala and Ludwigia peploidessubsp. montevidensis in Italy. We defined the invasion status with invasions curves and predicted potentially suitable areas with Species Distribution Models based on WorldClim variables and the human footprint index. Low seasonal variation in temperature and precipitation, temperature ≥ 20 °C in the warmest, driest and wettest periods of the year and precipitation in the coldest period are the bioclimatic factors that most account for the potential distribution of the two species. The human footprint has lower relative importance than bioclimatic variables. All Italian peninsula appears as a suitable bioclimatic environment for the invasion of the two Ludwigia species, except the Alps and the highest peaks in the Apennine. Based on the current distribution of the species in Italy and the mostly densely invaded areas globally, the agricultural land surrounding the current invaded areas and along the Italian coasts is the most vulnerable to the invasion. Considering the trend of the invasion curves, which have been sharply rising for the latest decades, there are reasons to expect that the alien Ludwigia species will continue their expansion, if no timely and effective actions are taken. Informative campaigns, accurate monitoring and prompt management are fundamental preventive tools in areas predicted as vulnerable to invasion by this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.