The nuclear peroxisome proliferator-activated receptor δ (PPARδ) is an important regulator of lipid metabolism. In contrast to its known effects on energy homeostasis, its biological role on inflammation is not well understood. We investigated the role of PPARδ in the modulation of the nuclear factor-κB (NF-κB)-driven inflammatory response to polymicrobial sepsis in vivo and in macrophages in vitro. We demonstrated that administration of GW0742, a specific PPARδ ligand, provided beneficial effects to rats subjected to cecal ligation and puncture, as shown by reduced systemic release of pro-inflammatory cytokines and neutrophil infiltration in lung, liver, and cecum, when compared with vehicle treatment. Molecular analysis revealed that treatment with GW0742 reduced NF-κB binding to DNA in lung and liver. In parallel experiments, heterozygous PPARδ-deficient mice suffered exaggerated lethality when subjected to cecal ligation and puncture and exhibited severe lung injury and higher levels of circulating tumor necrosis factor-α (TNFα) and keratinocyte-derived chemokine than wild-type mice. Furthermore, in lipopolysaccharide-stimulated J774.A1 macrophages, GW0742 reduced TNFα production by inhibiting NF-κB activation. RNA silencing of PPARδ abrogated the inhibitory effects of GW0742 on TNFα production. Chromatin immunoprecipitation assays revealed that PPARδ displaced the NF-κB p65 subunit from the κB elements of the TNFα promoter, while recruiting the co-repressor BCL6. These data suggest that PPARδ is a crucial anti-inflammatory regulator, providing a basis for novel sepsis therapies.
TNF-α is a mediator of lethality in experimental infections by group B streptococcus (GBS), an important human pathogen. Little is known of signal transduction pathways involved in GBS-induced TNF-α production. Here we investigate the role of mitogen-activated protein kinases (MAPKs) and NF-κB in TNF-α production by human monocytes stimulated with GBS or LPS, used as a positive control. Western blot analysis of cell lysates indicates that extracellular signal-regulated kinase 1/2 (ERK 1/2), p38, and c-Jun N-terminal kinase MAPKs, as well as IκBα, became phosphorylated, and hence activated, in both LPS- and GBS-stimulated monocytes. The kinetics of these phosphorylation events, as well as those of TNF-α production, were delayed by 30–60 min in GBS-stimulated, relative to LPS-stimulated, monocytes. Selective inhibitors of ERK 1/2 (PD98059 or U0126), p38 (SB203580), or NF-κB (caffeic acid phenetyl ester (CAPE)) could all significantly reduce TNF-α production, although none of the inhibitors used alone was able to completely prevent TNF-α release. However, this was completely blocked by combinations of the inhibitors, including PD98059-SB203580, PD98059-CAPE, or SB203580-CAPE combinations, in both LPS- and GBS-stimulated monocytes. In conclusion, our data indicate that the simultaneous activation of multiple pathways, including NF-κB, ERK 1/2, and p38 MAPKs, is required to induce maximal TNF-α production. Accordingly, in septic shock caused by either GBS or Gram-negative bacteria, complete inhibition of TNF-α release may require treatment with drugs or drug combinations capable of inhibiting multiple activation pathways.
Our data show that c-peptide has beneficial effects in endotoxic shock, and this therapeutic effect is associated with activation of proliferator-activated receptor-gamma.
The effect of prostaglandin E 2 (PGE 2 ) in regulating the synthesis of the pro-inflammatory chemokine interleukin-8 (IL-8) in T lymphocytes is not yet defined, even though it may reduce or enhance IL-8 synthesis in other cell types. Here, we demonstrate that, in human T cells, PGE 2 induced IL-8 mRNA transcription through prostaglandin E 2 receptors 1-and 4-dependent signal transduction pathways leading to the activation of the transcription factor C/EBP homologous protein (CHOP), never before implicated in IL-8 transcription. Several kinases, including protein kinase C, Src family tyrosine kinases, phosphatidylinositol 3-kinase, and p38 MAPK, were involved in PGE 2 -induced CHOP activation and IL-8 production. The transactivation of the IL-8 promoter by CHOP was NF-B-independent. Our data suggest that PGE 2 acts as a potent pro-inflammatory mediator by inducing IL-8 gene transcription in activated T cells through different signal transduction pathways leading to CHOP activation. These findings show the complexity with which PGE 2 regulates IL-8 synthesis by inhibiting or enhancing its production depending on the cell types and environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.