The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded proteins. One arm of this pathway results in the transient shutdown of protein translation, through phosphorylation of the a-subunit of eukaryotic translation initiation factor, eIF2. Activation of the unfolded protein response and/or increased eIF2a-P levels are seen in patients with Alzheimer's, Parkinson's and prion diseases 1-4 , but how this links to neurodegeneration is unknown. Here we show that accumulation of prion protein during prion replication causes persistent translational repression of global protein synthesis by eIF2a-P, associated with synaptic failure and neuronal loss in prion-diseased mice. Further, we show that promoting translational recovery in hippocampi of prion-infected mice is neuroprotective. Overexpression of GADD34, a specific eIF2a-P phosphatase, as well as reduction of levels of prion protein by lentivirally mediated RNA interference, reduced eIF2a-P levels. As a result, both approaches restored vital translation rates during prion disease, rescuing synaptic deficits and neuronal loss, thereby significantly increasing survival. In contrast, salubrinal, an inhibitor of eIF2a-P dephosphorylation 5 , increased eIF2a-P levels, exacerbating neurotoxicity and significantly reducing survival in priondiseased mice. Given the prevalence of protein misfolding and activation of the unfolded protein response in several neurodegenerative diseases, our results suggest that manipulation of common pathways such as translational control, rather than disease-specific approaches, may lead to new therapies preventing synaptic failure and neuronal loss across the spectrum of these disorders.Neurodegenerative diseases pose an ever-increasing challenge for society and health care systems worldwide, but their molecular pathogenesis is still largely unknown and no curative treatments exist. Alzheimer's (AD), Parkinson's (PD) and prion diseases are separate clinical and pathological conditions, but it is likely they share common mechanisms leading to neuronal death. Mice with prion disease show misfolded prion protein (PrP) accumulation and develop extensive neurodegeneration (with profound neurological deficits), in contrast to mouse models of AD or PD, in which neuronal loss is rare. Uniquely therefore, prion-infected mice allow access to mechanisms linking protein misfolding with neuronal death. Prion replication involves the conversion of cellular PrP, PrP C , to its misfolded, aggregating conformer, PrP Sc , a process leading ultimately to neurodegeneration 6 . We have previously shown rescue of neuronal loss and reversal of early cognitive and morphological changes in prion-infected mice by depleting PrP in neurons, preventing prion replication and ab...
During prion disease, an increase in misfolded prion protein (PrP) generated by prion replication leads to sustained overactivation of the branch of the unfolded protein response (UPR) that controls the initiation of protein synthesis. This results in persistent repression of translation, resulting in the loss of critical proteins that leads to synaptic failure and neuronal death. We have previously reported that localized genetic manipulation of this pathway rescues shutdown of translation and prevents neurodegeneration in a mouse model of prion disease, suggesting that pharmacological inhibition of this pathway might be of therapeutic benefit. We show that oral treatment with a specific inhibitor of the kinase PERK (protein kinase RNA-like endoplasmic reticulum kinase), a key mediator of this UPR pathway, prevented UPR-mediated translational repression and abrogated development of clinical prion disease in mice, with neuroprotection observed throughout the mouse brain. This was the case for animals treated both at the preclinical stage and also later in disease when behavioral signs had emerged. Critically, the compound acts downstream and independently of the primary pathogenic process of prion replication and is effective despite continuing accumulation of misfolded PrP. These data suggest that PERK, and other members of this pathway, may be new therapeutic targets for developing drugs against prion disease or other neurodegenerative diseases where the UPR has been implicated.
The mechanisms involved in prion neurotoxicity are unclear, and therapies preventing accumulation of PrPSc, the disease-associated form of prion protein (PrP), do not significantly prolong survival in mice with central nervous system prion infection. We found that depleting endogenous neuronal PrPc in mice with established neuroinvasive prion infection reversed early spongiform change and prevented neuronal loss and progression to clinical disease. This occurred despite the accumulation of extraneuronal PrPSc to levels seen in terminally ill wild-type animals. Thus, the propagation of nonneuronal PrPSc is not pathogenic, but arresting the continued conversion of PrPc to PrPSc within neurons during scrapie infection prevents prion neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.