The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and blood vases are piezoelectric, namely, electric signals are locally produced upon mechanical stimulation of these tissues. The specific effects of electric charge generation on different cells are not fully understood, but a substantial amount of evidence has suggested their functional and physiological roles. This review summarizes the special contribution of piezoelectricity as a stimulatory signal for bone and vascular tissue regeneration, including osteogenesis, angiogenesis, vascular repair, and tissue engineering, by considering different stem cell sources entailed with osteogenic and angiogenic potential, aimed at collecting the key findings that may enable the development of successful vascularized bone replacements useful in orthopedic and otologic surgery.
At present just about 30% of the waste plastic collected is efficiently recycled, while the rest is incinerated, disposed in landfills, or can end up in compost and be released in the environment, inducing a very negative effect on safety and health of flora and fauna. Sustainable management of hardly recyclable plastic waste generated by light weight single use packaging and agricultural films can be improved by applying biotechnological approaches, combining microorganisms, new enzymes, earthworms, and insects to work collaboratively, not only to promote the degradation of these plastics but also to obtain, by-products of the biodegradation process to be valorized as fertilizers, functional polysaccharides, etc. In order to develop a feasible process, mapping and characterization of the most diffused agri-food waste plastic were conducted isolating the main types of plastic involved. Plastic waste in agriculture is mainly constituted by polyethylene (PE) both linear low density (LLDPE) and high density (HDPE), polypropylene (PP) and polystyrene (PS), whereas in food packaging polyethylene is still present together with a large presence of polypropylene, polystyrene and polyethylene terephthalate (PET). Combining plastic presence and availability of organisms for their degradability, representative samples of plastics (PE, PET, PS) were selected for analysis of deterioration and potential subsequent biodegradation by enzymes and organisms. To monitor the plastic degradability by enzymes, and larvae, methods for the plastic analysis were set, outlining some differences in virgin and post consumer plastic in particular after use in agriculture, assessing the possibility to monitor the degradability of plastic with time and different treatments, in particular, some evidence of polyethylene degradability from larvae of Tenebrio molitor was observed.
The present work focused on the development and characterization of biocomposites based on a fully bio-based polyester, poly(butylene succinate-co-butylene adipate) (PBSA), and wheat bran derived by flour milling. PBSA-bran composites containing 5, 10, 15, and 20 wt.% of wheat bran were produced via melt extrusion and processed by injection molding. Their thermal, rheological, morphological, and tensile properties were investigated. In addition, a biodegradation test in a natural marine environment was conducted on composite dog-bones to assess the capacity of the used filler to increase the PBSA biodegradation rate. The composites maintained similar melt processability and mechanical properties to virgin PBSA with up to 15 wt.% bran content. This result was also supported by morphological investigation, which showed good filler dispersion within the polymer matrix at low-mid bran content, whereas poor polymer-filler dispersion occurred at higher concentrations. Furthermore, the biodegradation tests showed bran’s capacity to improve the PBSA biodegradation rate, probably due to the hygroscopic bran swelling, which induced the fragmentation of the dog-bone with a consequent increase in the polymeric matrix–seawater interfacial area, accelerating the degradation mechanisms. These results encourage the use of wheat bran, an abundant and low-cost agri-food by-product, as a filler in PBSA-based composites to develop products with good processability, mechanical properties, and controlled biodegradability in marine environments.
This article aims at describing both the studies and results implemented in the framework of the H2020-EU research project “RECOVER: New bio-recycling routes for food packaging and agricultural plastic waste” which deals with the sustainability of innovative biodegradation processes for plastic waste and production, in any environmental, social, economic and safety matters. In such a framework, the POLOG University Centre (Livorno, Italy), reconstructed and analyzed the actual farm plastic waste supply chain, as described in the following sections. The first section is introductive and it has been intended as a primer to the most common different types of plastic materials. The second section has deserved to be a state of the art on the most relevant issues raised in plastic waste management. The third section deals with suitable approaches to address the environmental side effects of rapidly growing plastics production, use, and disposal. Some of these approaches were listed, such as physical treatment of the polymeric components, plastic reduction use and employment as much as mechanical and/or chemical recycling and energy recovery. The fourth section shows how some of the above main issues, which raise coping with plastic reduction and recycling, are suited to be coped with from a logistics perspective. Such logistics belong to the basic needs due to tackling any plastic waste supply chain, i.e. collection and transport to intermediate stock and final delivery to recycling plants and/or brownfields, applying the set of methodologies and techniques drawn from the well-known field of pick-up-and-delivery models. These last tasks become crucial when the main effort has addressed the enforcement of any feasible changes from the use of items made in old high environmental intrusive to their replacement with new agricultural and biodegradable plastics. The paper goes to end presenting shortly of a few suitable solutions that could be proposed and applied to the entire plastic waste supply chain. Finally, some concrete aspects of each phase of the supply chain were discussed and it was highlighted how much each of these can be best used in addressing the problem known throughout the world as the problem of the emergency of old plastic waste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.