The incidence of inflammatory bowel disease is increasing all over the world, especially in industrialized countries. The aim of the present work was to verify the anti-inflammatory activity of metabolites. In particular, cell-free supernatants of Lactobacillus acidophilus, Lactobacillus casei, Lactococcus lactis, Lactobacillus reuteri, and Saccharomyces boulardii have been investigated. Metabolites produced by these probiotics were able to downregulate the expression of PGE-2 and IL-8 in human colon epithelial HT-29 cells. Moreover, probiotic supernatants can differently modulate IL-1β, IL-6, TNF-α, and IL-10 production by human macrophages, suggesting a peculiar anti-inflammatory activity. Furthermore, supernatants showed a significant dose-dependent radical scavenging activity. This study suggests one of the mechanisms by which probiotics exert their anti-inflammatory activity affecting directly the intestinal epithelial cells and the underlying macrophages. This study provides a further evidence to support the possible use of probiotic metabolites in preventing and downregulating intestinal inflammation as adjuvant in anti-inflammatory therapy.
A large body of evidence points to the positive effects of dietary supplementation of acetyl-L-carnitine (ALC). Its use has shown health benefits in neuroinflammation, which is a common denominator in a host of neurodegenerative diseases. ALC is the principal acetyl ester of L-Carnitine (LC), and it plays an essential role in intermediary metabolism, acting as a donor of acetyl groups and facilitating the transfer of fatty acids from cytosol to mitochondria during beta-oxidation. Dietary supplementation of ALC exerts neuroprotective, neurotrophic, antidepressive and analgesic effects in painful neuropathies. ALC also has antioxidant and anti-apoptotic activity. Moreover, ALC exhibits positive effects on mitochondrial metabolism, and shows promise in the treatment of aging and neurodegenerative pathologies by slowing the progression of mental deterioration. In addition, ALC plays neuromodulatory effects on both synaptic morphology and synaptic transmission. These effects are likely due to affects of ALC through modulation of gene expression on several targets in the central nervous system. Here, we review the current state of knowledge on effects of ALC in the nervous system.
The mast cells (MCs) are the leader cells of inflammation. They are well known for their involvement on allergic reactions through degranulation and release of vasoactive, inflammatory, and nociceptive mediators. Upon encountering potential danger signal, MCs are true sensors of the environment, the first to respond in rapid and selective manner. The MC activates the algic response and modulates the evolution of nociceptive pain, typical of acute inflammation, to neuropathic pain, typical not only of chronic inflammation but also of the dysregulation of the pain system. Yet, MC may contribute to modulate intensity of the associated depressive and anxiogenic component on the neuronal and microglial biological front. Chronic inflammation is a common mediator of these co-morbidities. In parallel to the removal of the etiological factors of tissue damage, the modulation of MC hyperactivity and the reduction of the release of inflammatory factors may constitute a new frontier of pharmacological intervention aimed at preventing the chronicity of inflammation, the evolution of pain, and also the worsening of the depression and anxiogenic state associated with it. So, identifying specific molecules able to modify MC activity may be an important therapeutic tool. Various preclinical evidences suggest that the intestinal microbiota contributes substantially to mood and behavioral disorders. In humans, conditions of the microbiota have been linked to stress, anxiety, depression, and pain. MC is likely the crucial neuroimmune connecting between these components. In this review, the involvement of MCs in pain, stress, and depression is reviewed. We focus on the MC as target that may be mediating stress and mood disorders via microbiota–gut–brain axis.
Acetylcholine receptor (AChR) gamma and epsilon subunits were tagged by green fluorescent protein (GFP) to analyse assembly and targeting in live muscle fibers at the neuromuscular junction. N- or C-terminal fusion polypeptides showed no fluorescence upon transfection of HEK cells. When GFP was inserted into the cytoplasmic loop connecting putative transmembrane regions M3 and M4, the gamma/GFP and epsilon/GFP subunits were fluorescent and formed together with the alpha, beta, and delta subunits GFP-tagged AChR complexes that were integrated into the plasma membrane. As the AChR were also clustered by rapsyn, the results indicate that the cytoplasmatic domains of the gamma and epsilon subunits may not be required for assembly and rapsyn-dependent clustering. The gamma/GFP and epsilon/GFP subunit-containing receptors were expressed in X. laevis oocytes and have affinities for acetylcholine similar to that of the wild-type receptors. Direct gene transfer into single muscle fibers reveals that gamma/GFP or epsilon/GFP polypeptides are expressed at the site of injection and are transported within the endoplasmatic reticulum. When reaching subsynaptic regions, both gamma/GFP or epsilon/GFP subunits compete with endogenous epsilon subunits to assemble GFP-tagged receptors, which are selectively targeted to the postsynaptic membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.