Reliable quantification of white matter hyperintensities of presumed vascular origin (WMHs) is increasingly needed, given the presence of these MRI findings in patients with several neurological and vascular disorders, as well as in elderly healthy subjects.We present BIANCA (Brain Intensity AbNormality Classification Algorithm), a fully automated, supervised method for WMH detection, based on the k-nearest neighbour (k-NN) algorithm. Relative to previous k-NN based segmentation methods, BIANCA offers different options for weighting the spatial information, local spatial intensity averaging, and different options for the choice of the number and location of the training points. BIANCA is multimodal and highly flexible so that the user can adapt the tool to their protocol and specific needs.We optimised and validated BIANCA on two datasets with different MRI protocols and patient populations (a “predominantly neurodegenerative” and a “predominantly vascular” cohort).BIANCA was first optimised on a subset of images for each dataset in terms of overlap and volumetric agreement with a manually segmented WMH mask. The correlation between the volumes extracted with BIANCA (using the optimised set of options), the volumes extracted from the manual masks and visual ratings showed that BIANCA is a valid alternative to manual segmentation. The optimised set of options was then applied to the whole cohorts and the resulting WMH volume estimates showed good correlations with visual ratings and with age. Finally, we performed a reproducibility test, to evaluate the robustness of BIANCA, and compared BIANCA performance against existing methods.Our findings suggest that BIANCA, which will be freely available as part of the FSL package, is a reliable method for automated WMH segmentation in large cross-sectional cohort studies.
Background: Aberrant social behavior is a defining symptom of frontotemporal dementia (FTD)
White matter hyperintensities (WMH) are frequently divided into periventricular (PWMH) and deep (DWMH), and the two classes have been associated with different cognitive, microstructural, and clinical correlates. However, although this distinction is widely used in visual ratings scales, how to best anatomically define the two classes is still disputed. In fact, the methods used to define PWMH and DWMH vary significantly between studies, making results difficult to compare. The purpose of this study was twofold: first, to compare four current criteria used to define PWMH and DWMH in a cohort of healthy older adults (mean age: 69.58 ± 5.33 years) by quantifying possible differences in terms of estimated volumes; second, to explore associations between the two WMH sub-classes with cognition, tissue microstructure and cardiovascular risk factors, analysing the impact of different criteria on the specific associations. Our results suggest that the classification criterion used for the definition of PWMH and DWMH should not be considered a major obstacle for the comparison of different studies. We observed that higher PWMH load is associated with reduced cognitive function, higher mean arterial pressure and age. Higher DWMH load is associated with higher body mass index. PWMH have lower fractional anisotropy than DWMH, which also have more heterogeneous microstructure. These findings support the hypothesis that PWMH and DWMH are different entities and that their distinction can provide useful information about healthy and pathological aging processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.