A fibrogenic sample of cristobalite dust, CRIS (crystalline silica of mineral origin), was heated to 1300 degrees C (CRIS-1300) to relate induced physicochemical modifications to cytotoxicity. Heating did not affect dust micromorphology and crystallinity, except for limited sintering and decreased surface area of CRIS-1300. Thermal treatments deeply affected surface properties. Electron paramagnetic resonance showed surface radicals progressively annealed by heating, mostly disappearing at >/=800 degrees C. Surface hydrophilicity or hydrophobicity, evaluated with water vapor adsorption, still showed some hydrophilic patches in CRIS-800, but CRIS-1300 was fully hydrophobic. Heating modified the biological activity of cristobalite. Cytotoxicity, tested on proliferating cells of the mouse monocyte macrophage cell line J774, showed that CRIS was cytotoxic and CRIS-800 was still cytotoxic, but CRIS-1300 was substantially inert. Cytotoxicity of CRIS to the rat lung alveolar epithelial cell line, AE6, as measured by colony forming efficiency, was greatly reduced for CRIS-800 and eliminated for CRIS-1300. The rate of lactate dehydrogenase release by rat alveolar macrophages was lowered for CRIS-800, and release was completely inactivated for CRIS-1300. The absence of surface radicals and the onset of hydrophobicity may both account for the loss of cytotoxicity upon heating. Differences observed between CRIS-800 and CRIS-1300, both fully deprived of surface radicals, indicate that hydrophobicity is at least one of the surface properties determining the cytotoxic potential of a dust.
The objective of this study was to examine the influence of specific surface area on the biological activity of insoluble manganese dioxide (MnO2) particles. The biological responses to various MnO2 dusts with different specific surface area (0.16, 0.5, 17 and 62 m2/g) were compared in vitro and in vivo. A mouse peritoneal macrophage model was used to evaluate the in vitro cytotoxic potential of the particles via lactate dehydrogenase (LDH) release. In vivo, the lung inflammatory response was assessed by analysis of bronchoalveolar lavage after intratracheal instillation in mice (LDH activity, protein concentration and cellular recruitment). In both systems, the results show that the amplitude of the response is dependent on the total surface area which is in contact with the biological system, indicating that surface chemistry phenomena are involved in the biological reactivity. Freshly ground particles with a specific surface area of 5 m2/g were also examined in vitro. These particles exhibited an enhanced cytotoxic activity, which was almost equivalent to that of 62 m2/g particles, indicating that undefined reactive sites produced at the particle surface by mechanical cleavage may also contribute to the toxicity of insoluble particles. We conclude that, when conducting studies to elucidate the effect of particles on the lung, it is important for insoluble particles such as manganese dioxide to consider the administered dose in terms of surface area (e.g. m2/kg) rather than in gravimetric terms (e.g. mg/kg).
Iron in amphibole asbestos is implicated in the pathogenicity of inhaled fibers. Evidence includes the observation that iron chelators can suppress fiber-induced tissue damage. This is believed to occur via the diminished production of fiber-associated reactive oxygen species. The purpose of this study was to explore possible mechanisms for the reduction of fiber toxicity by iron chelator treatments. We studied changes in the amount and the oxidation states of bulk and surface iron in crocidolite and amosite asbestos that were treated with iron-chelating desferrioxamine, ferrozine, sodium ascorbate, and phosphate buffer solutions. The results have been compared with the ability of the fibers to produce free radicals and decompose hydrogen peroxide in a cell-free system in vitro. We found that chelators can affect the amount of iron at the surface of the asbestos fibers and its valence, and that they can modify the chemical reactivity of these surfaces. However, we found no obvious or direct correlations between fiber reactivity and the amount of iron removed, the amount of iron at the fiber surface, or the oxidation state of surface iron. Our results suggest that surface Fe3+ ions may play a role in fiber-related carboxylate radical formation, and that desferrioxamine and phosphate groups detected at treated fiber surfaces may play a role in diminishing and enhancing, respectively, fiber redox activity. It is proposed that iron mobility in the silicate structure may play a larger role in the chemical reactivity of asbestos than previously assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.