The HtrA (DegP) protein of Escherichia coli is a heat shock serine protease, essential for cell survival only at temperatures above 42°C. It has been shown by genetic experiments that HtrA is an envelope protease, functioning in the periplasmic space. To clarify the cellular localization of HtrA, E. coli cells were fractionated, and HtrA was not detected by the immunoblotting technique in the periplasm or in the fraction of soluble proteins but was found in the inner membrane. The protein could be partially eluted from the total membrane fraction by a high ionic strength solution, whereas solutions affecting protein conformation released HtrA almost completely. These results, taken together with the evidence showing that HtrA functions in the periplasm, indicate that HtrA is a peripheral membrane protein, localized on the periplasmic side of the inner membrane. As the first step toward solving the problem of HtrA-membrane interactions, the structure of HtrA in the presence of phosphatidylglycerol (PG), phosphatidylethanolamine (PE), or cardiolipin (CL) was analyzed by fluorescence and Fourier-transform infrared spectroscopy. The infrared and fluorescence data indicated an interaction of HtrA with PG and CL but not with PE suspensions. Fluorescence spectroscopy revealed that this interaction was at the level of the polar head group of the phospholipid. In the PG/HtrA system, small changes were observed in the HtrA secondary structure and a remarkable decrease of the thermal stability of the protein, which suggested changes in HtrA tertiary structure. This suggestion was supported by fluorescence data that showed a shift of the fluorescence emission spectrum of HtrA tyrosine residues in the presence of PG and a reduced fluorescence intensity, phenomena not observed in the presence of PE or CL suspensions. Infrared data revealed also that the interaction of HtrA with PG leads to a protection of unfolded protein against aggregation at relatively low temperatures. The conformational changes of HtrA in the presence of PG influenced the proteolytic activity of HtrA by increasing it at the temperatures 37-45°C and inhibiting it at 50-55°C. CL inhibited HtrA activity at all of the temperatures tested.
The functions of N-acylethanolamines, minor constituents of mammalian cells, are poorly understood. It was suggested that NAEs might have some pharmacological actions and might serve as a cytoprotective response, whether mediated by physical interactions with membranes or enzymes or mediated by activation of cannabinoid receptors. Albumins are identified as the major transport proteins in blood plasma for many compounds including fatty acids, hormones, bilirubin, ions, and many drugs. Moreover, albumin has been used as a model protein in many areas, because of its multifunctional binding properties. Bovine (BSA) and human (HSA) serum albumin are similar in sequence and conformation, but differ for the number of tryptophan residues. This difference can be used to monitor unlike protein domains. Our data suggest that NOEA binds with high affinity to both albumins, modifying their conformational features. In both proteins, NOEA molecules are linked with higher affinity to hydrophobic sites near Trp-214 in HSA or Trp-212 in BSA. Moreover, fluorescence data support the hypothesis of the presence of other NOEA binding sites on BSA, likely affecting Trp-134 environment. The presence of similar binding sites is not measurable on HSA, because it lacks of the second Trp residue.
Despite extensive investigations on thermal denaturation of alpha(1)-acid glycoprotein (AGP) using a variety of techniques, structural features of the folded-unfolded state in terms of residual secondary structures and the structural transitions involved in this process have not been fully characterized. In this study we employed FT-IR spectroscopy to investigate the thermal unfolding and reversibility of temperature-induced changes in AGP. The data revealed a fully reversible beta-sheet-rich protein which exhibits a molten globule-like state, an important protein folding intermediate. 2D-IR COS revealed the sequence of the conformational changes occurring before denaturation and confirmed the formation of this intermediate which was further supported by CD spectroscopy. On account of the similarities in the FT-IR spectra of AGP with those of porcine odorant-binding protein (OBP), homology modeling of AGP using OBP as template was performed. The resemblance of AGP and OBP 3D structures confirmed the similarities of data obtained using FT-IR spectroscopy. Overall, FT-IR spectroscopy appears to be useful for investigating the structural characteristics and stability of proteins whose 3D structures are unavailable and for assessing the molten globule-like state in small beta-sheet-rich proteins.
Capacitation is a widely investigated process, which induces sperm plasma membrane changes resulting in its increased affinity for the zona pellucida. The fluorescent probe Laurdan, localized only within the plasma membrane of spermatozoa, is particularly useful to evaluate bilayer polarity in this part of the cell. According to a previous study, sperm membranes from oligozoospermic and some normozoospermic subjects (defined according to World Health Organization criteria), are characterized by low polarity (high Laurdan exGP(340)), while the spermatozoa from the remaining normozoospermic men show a larger polarity (low exGP(340)). In this paper, Laurdan was used to study membrane changes occurring during in-vitro capacitation, on sperm membranes from oligozoospermic and normozoospermic subjects. Results indicated that cells with high exGP(340) show a different susceptibility to Ca(2+)-induced capacitation in vitro, as compared with cells with low exGP(340). Palmitylethanolamide, physiologically present in human reproductive tracts, affects the time-course of in-vitro capacitation, increasing the rate of this process only in the cells with a lower membrane polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.