Data are accumulating that emphasize the important role of the intestinal barrier and intestinal permeability for health and disease. However, these terms are poorly defined, their assessment is a matter of debate, and their clinical significance is not clearly established. In the present review, current knowledge on mucosal barrier and its role in disease prevention and therapy is summarized. First, the relevant terms ‘intestinal barrier’ and ‘intestinal permeability’ are defined. Secondly, the key element of the intestinal barrier affecting permeability are described. This barrier represents a huge mucosal surface, where billions of bacteria face the largest immune system of our body. On the one hand, an intact intestinal barrier protects the human organism against invasion of microorganisms and toxins, on the other hand, this barrier must be open to absorb essential fluids and nutrients. Such opposing goals are achieved by a complex anatomical and functional structure the intestinal barrier consists of, the functional status of which is described by ‘intestinal permeability’. Third, the regulation of intestinal permeability by diet and bacteria is depicted. In particular, potential barrier disruptors such as hypoperfusion of the gut, infections and toxins, but also selected over-dosed nutrients, drugs, and other lifestyle factors have to be considered. In the fourth part, the means to assess intestinal permeability are presented and critically discussed. The means vary enormously and probably assess different functional components of the barrier. The barrier assessments are further hindered by the natural variability of this functional entity depending on species and genes as well as on diet and other environmental factors. In the final part, we discuss selected diseases associated with increased intestinal permeability such as critically illness, inflammatory bowel diseases, celiac disease, food allergy, irritable bowel syndrome, and – more recently recognized – obesity and metabolic diseases. All these diseases are characterized by inflammation that might be triggered by the translocation of luminal components into the host. In summary, intestinal permeability, which is a feature of intestinal barrier function, is increasingly recognized as being of relevance for health and disease, and therefore, this topic warrants more attention.Electronic supplementary materialThe online version of this article (doi:10.1186/s12876-014-0189-7) contains supplementary material, which is available to authorized users.
Irritable bowel syndrome (IBS) is a functional gastrointestinal disease with a high population prevalence. The disorder can be debilitating in some patients, whereas others may have mild or moderate symptoms. The most important single risk factors are female sex, younger age and preceding gastrointestinal infections. Clinical symptoms of IBS include abdominal pain or discomfort, stool irregularities and bloating, as well as other somatic, visceral and psychiatric comorbidities. Currently, the diagnosis of IBS is based on symptoms and the exclusion of other organic diseases, and therapy includes drug treatment of the predominant symptoms, nutrition and psychotherapy. Although the underlying pathogenesis is far from understood, aetiological factors include increased epithelial hyperpermeability, dysbiosis, inflammation, visceral hypersensitivity, epigenetics and genetics, and altered brain–gut interactions. IBS considerably affects quality of life and imposes a profound burden on patients, physicians and the health-care system. The past decade has seen remarkable progress in our understanding of functional bowel disorders such as IBS that will be summarized in this Primer.
It is increasingly perceived that gut host–microbial interactions are important elements in the pathogenesis of functional gastrointestinal disorders (FGID). The most convincing evidence to date is the finding that functional dyspepsia and irritable bowel syndrome (IBS) may develop in predisposed individuals following a bout of infectious gastroenteritis. There has been a great deal of interest in the potential clinical and therapeutic implications of small intestinal bacterial overgrowth in IBS. However, this theory has generated much debate because the evidence is largely based on breath tests which have not been validated. The introduction of culture-independent molecular techniques provides a major advancement in our understanding of the microbial community in FGID. Results from 16S rRNA-based microbiota profiling approaches demonstrate both quantitative and qualitative changes of mucosal and faecal gut microbiota, particularly in IBS. Investigators are also starting to measure host–microbial interactions in IBS. The current working hypothesis is that abnormal microbiota activate mucosal innate immune responses which increase epithelial permeability, activate nociceptive sensory pathways and dysregulate the enteric nervous system. While we await important insights in this field, the microbiota is already a therapeutic target. Existing controlled trials of dietary manipulation, prebiotics, probiotics, synbiotics and non-absorbable antibiotics are promising, although most are limited by suboptimal design and small sample size. In this article, the authors provide a critical review of current hypotheses regarding the pathogenetic involvement of microbiota in FGID and evaluate the results of microbiota-directed interventions. The authors also provide clinical guidance on modulation of gut microbiota in IBS.
Background & Aims:Intestinal mast cell infiltration may participate to abdominal pain in irritable bowel syndrome (IBS) patients. However, the underlying mechanisms remain unknown. We assessed the effect of mast cell mediators released from the colonic mucosa of IBS patients on the activation of rat sensory neurons in vitro. Methods: Colonic mast cell infiltration and mediator release were assessed with quantitative immunoflorescence and immunoenzymatic assays. The effect of mucosal mediators was tested on mesenteric sensory nerve firing and Ca 2؉ mobilization in dorsal root ganglia in rats. Results: Mediators from IBS patients, but not controls, markedly enhanced the firing of mesenteric nerves (14.7 ؎ 3.2 imp/sec vs 2.8 ؎ 1.5 imp/sec; P < .05) and stimulated mobilization of Ca 2؉ in dorsal root ganglia neurons (29% ؎ 4% vs 11% ؎ 4%; P < .05). On average, 64% of dorsal root ganglia responsive to mediators were capsaicin-sensitive, known to mediate nociception. Histamine and tryptase were mainly localized to mucosal mast cells. IBS-dependent nerve firing and Ca 2؉ mobilization were correlated with the area of the colonic lamina propria occupied by mast cells (r ؍ 0.74; P < .01, and r ؍ 0.78; P < .01, respectively). IBS-dependent excitation of dorsal root ganglia was inhibited by histamine H 1 receptor blockade and serine protease inactivation (inhibition of 51.7%; P < .05 and 74.5%; P < .05; respectively). Conclusions: Mucosal mast cell mediators from IBS patients excite rat nociceptive visceral sensory nerves. These results provide new insights into the mechanism underlying visceral hypersensitivity in IBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.