A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale.
Climate change has led to concerns about increasing river floods resulting from the greater water-holding capacity of a warmer atmosphere 1 . These concerns are reinforced by evidence of increasing economic losses associated with flooding in many parts of the world, including Europe 2 . Any changes in river floods would have lasting implications for the design of flood protection measures and flood risk zoning. However, existing studies have been unable to identify a consistent continental-scale climatic-change signal in flood discharge observations in Europe 3 , because of the limited spatial coverage and number of hydrometric stations. Here we demonstrate clear regional patterns of both increases and decreases in observed river flood discharges in the past five decades in Europe, which are manifestations of a changing climate. Our results-arising from the most complete database of European flooding so farsuggest that: increasing autumn and winter rainfall has resulted in increasing floods in northwestern Europe; decreasing precipitation and increasing evaporation have led to decreasing floods in medium and large catchments in southern Europe; and decreasing snow cover and snowmelt, resulting from warmer temperatures, have led to decreasing floods in eastern Europe. Regional flood discharge trends in Europe range from an increase of about 11 per cent per decade to a decrease of 23 per cent. Notwithstanding the spatial and temporal heterogeneity of the observational record, the flood changes identified here are broadly consistent with climate model projections for the next century 4,5 , suggesting that climatedriven changes are already happening and supporting calls for the consideration of climate change in flood risk management.River floods are among the most costly natural hazards. Global annual average losses are estimated at US$104 billion 6 and are expected to increase with economic growth, urbanization and climatic change 2,7 . Physical arguments of increased heavy precipitation resulting from the enhanced water-holding capacity of a warmer atmosphere and
1. The stress-gradient hypothesis (SGH) predicts that the balance of plant-plant interactions shifts along abiotic environmental gradients, with facilitation becoming more frequent under stressful conditions. However, recent studies have challenged this perspective, reporting that positive interactions are, in some cases, more common at the intermediate level of environmental severity gradients. Here, we test whether and how neighbour effects by Silene acaulis cushions vary along a 700 m wide altitudinal transect, in relation to cushion morphological traits and environmental severity. 2. Field measurements along the gradient, within and outside cushions, included (i) species richness and cover of coexisting vascular plants; (ii) cushion morphology; (iii) above-and belowground microclimate; and (iv) soil quality. We used the relative interaction index to decouple neighbour trait effects and environmental severity effects on plant diversity at different elevations. 3. The ability of the cushion plant to facilitate heterospecifics shifts considerably along the elevation gradient, being greatest at the intermediate level. On the other hand, Silene morphological traits steadily change along the gradient, from lax, soft and flat-shaped cushion habits at low elevation to tightly knit and dome-shaped habits at high elevation. 4. Cushion morphological changes are associated with mitigating effects on microclimate, indicating that cushions effectively act as a heat-trap at medium and high elevations, while at low elevations the soft and flat cushions avoid excessive heat accumulation by tight coupling with the surrounding atmosphere. At the upper end of the gradient, cushion cespitose-pulvinate compactness and high stem density appear to be critical traits in modulating the net effect of plantplant interaction, since the space available for hosting other vascular species is considerably reduced. 5. In conclusion, this work provides a mechanistic link between plant morphological traits, associated biogenic microclimate changes and variation in net plant-plant interactions along the explored severity gradient. Our findings support an alternative conceptual model to SGH, with plant facilitation collapsing at the upper extreme of the abiotic stress gradient.
Abstract. This paper describes a set of spatial rainfall statistics (termed "spatial moments of catchment rainfall") quantifying the dependence existing between spatial rainfall organisation, basin morphology and runoff response. These statistics describe the spatial rainfall organisation in terms of concentration and dispersion statistics as a function of the distance measured along the flow routing coordinate. The introduction of these statistics permits derivation of a simple relationship for the quantification of catchment-scale storm velocity. The concept of the catchment-scale storm velocity takes into account the role of relative catchment orientation and morphology with respect to storm motion and kinematics. The paper illustrates the derivation of the statistics from an analytical framework recently proposed in literature and explains the conceptual meaning of the statistics by applying them to five extreme flash floods occurred in various European regions in the period 2002-2007. High resolution radar rainfall fields and a distributed hydrologic model are employed to examine how effective are these statistics in describing the degree of spatial rainfall organisation which is important for runoff modelling. This is obtained by quantifying the effects of neglecting the spatial rainfall variability on flood modelling, with a focus on runoff timing. The size of the study catchments ranges between 36 to 982 km 2 . The analysis reported here shows that the spatial moments of catchment rainfall can be effectively employed to isolate and describe the features of rainfall spatial organization which have significant impact on runoff simulation. These statistics provide useful information on what space-time scales rainfall has to be monitored, given certain catchment and flood characteristics, and what are the effects of space-time aggregation on flood response modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.