The way of generating and distributing energy throughout the electrical grid to all users is evolving. The concept of Smart Grid (SG) took place to enhance the management of the electrical grid infrastructure and its functionalities from the traditional system to an improved one. To measure the energy consumption of the users is one of these functionalities that, in some countries, has already evolved from a periodical manual consumption reading to a more frequent and automatic one, leading to the concept of Smart Metering (SM). Technology improvement could be applied to the SM systems to allow, on one hand, a more efficient way to collect the energy consumption data of each user, and, on the other hand, a better distribution of the available energy through the infrastructure. Widespread communication solutions based on existing telecommunication infrastructures instead of using ad-hoc ones can be exploited for this purpose. In this paper, we recall the basic elements and the evolution of the SM network architecture focusing on how it could further improve in the near future. We report the main technologies and protocols which can be exploited for the data exchange throughout the infrastructure and the pros and cons of each solution. Finally, we propose an innovative solution as a possible evolution of the SM system. This solution is based on a set of Internet of Things (IoT) communication technologies called Low Power Wide Area Network (LPWAN) which could be employed to improve the performance of the currently used technologies and provide additional functionalities. We also propose the employment of Unmanned Aerial Vehicles (UAVs) to periodically collect energy consumption data, with evident advantages especially if employed in rural and remote areas. We show some preliminary performance results which allow assessing the feasibility of the proposed approach.
The large spread of Distributed Energy Resources (DERs) and the related cyber-security issues introduce the need for monitoring. The proposed work focuses on an anomaly detection strategy based on the physical behavior of the industrial process. The algorithm extracts some measures of the physical parameters of the system and processes them with a neural network architecture called autoencoder in order to build a classifier making decisions about the behavior of the system and detecting possible cyber-attacks or faults. The results are quite promising for a practical application in real systems.
Microgrids are growing in importance in the Smart Grid paradigm for power systems. Microgrid security is becoming crucial since these systems increasingly rely on information and communication technologies. Many technologies have been proposed in the last few years for the protection of industrial control systems, ranging from cryptography, network security, security monitoring systems, and innovative control strategies resilient to cyber-attacks. Still, electrical systems and microgrids present their own peculiarities, and some effort has to be put forth to apply cyber-protection technologies in the electrical sector. In the present work, we discuss the latest advancements and research trends in the field of microgrid cybersecurity in a tutorial form.
Critical Infrastructures (CIs) are sensible targets. They could be physically damaged by natural or human actions, causing service disruptions, economic losses, and, in some extreme cases, harm to people. They, therefore, need a high level of protection against possible unintentional and intentional events. In this paper, we show a logical architecture that exploits information from both physical and cybersecurity systems to improve the overall security in a power plant scenario. We propose a Machine Learning (ML)-based anomaly detection approach to detect possible anomaly events by jointly correlating data related to both the physical and cyber domains. The performance evaluation showed encouraging results—obtained by different ML algorithms—which highlights how our proposed approach is able to detect possible abnormal situations that could not have been detected by using only information from either the physical or cyber domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.