A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 +/- 0.9 and 70.5 +/- 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 +/- 1.8 and 63.8 +/- 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO2 and tHb.
In this study, we describe a time-correlated single photon counting (TCSPC) technique for multi-wavelength lifetime imaging in laser-scanning microscopes. The technique is based on a four-dimensional histogramming process that records the photon density versus the time in the fluorescence decay, the x-y coordinates of the scanning area and the wavelength. It avoids any time gating or wavelength scanning and, therefore, yields a near-ideal counting efficiency. The decay functions are recorded in a large number of time channels, and the components of a multi-exponential decay can be resolved down to less than 30 ps. A single TCSPC imaging channel works with a high detection efficiency up to a photon count rate of about 5 . 10 6 s -1 . A modified version of the TCSPC fluorescence lifetime imaging (FLIM) technique uses several fully parallel detector and TCSPC channels. It operates at a count rate of more than 10 7 photons per second and records double-exponential FLIM data within less than 10 seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.