Contact tracing is an essential tool to mitigate the impact of a pandemic, such as the COVID-19 pandemic. In order to achieve efficient and scalable contact tracing in real time, digital devices can play an important role. While a lot of attention has been paid to analyzing the privacy and ethical risks of the associated mobile applications, so far much less research has been devoted to optimizing their performance and assessing their impact on the mitigation of the epidemic. We develop Bayesian inference methods to estimate the risk that an individual is infected. This inference is based on the list of his recent contacts and their own risk levels, as well as personal information such as results of tests or presence of syndromes. We propose to use probabilistic risk estimation to optimize testing and quarantining strategies for the control of an epidemic. Our results show that in some range of epidemic spreading (typically when the manual tracing of all contacts of infected people becomes practically impossible but before the fraction of infected people reaches the scale where a lockdown becomes unavoidable), this inference of individuals at risk could be an efficient way to mitigate the epidemic. Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact. Such communication may be encrypted and anonymized, and thus, it is compatible with privacy-preserving standards. We conclude that probabilistic risk estimation is capable of enhancing the performance of digital contact tracing and should be considered in the mobile applications.
Computing marginal distributions of discrete or semi-discrete Markov Random Fields (MRF) is a fundamental, generally intractable, problem with a vast number of applications on virtually all fields of science. We present a new family of computational schemes to calculate approximately marginals of discrete MRFs. This method shares some desirable properties with Belief Propagation, in particular providing exact marginals on acyclic graphs; but at difference with it, it includes some loop corrections, i.e. it takes into account correlations coming from all cycles in the factor graph. It is also similar to Adaptive TAP, but at difference with it, the consistency is not on the first two moments of the distribution but rather on the value of its density on a subset of values. Results on random connectivity and finite dimensional Ising and Edward-Anderson models show a significant improvement with respect to the Bethe-Peierls (tree) approximation in all cases, and with respect to Plaquette Cluster Variational Method approximation in many cases. In particular, for the critical inverse temperature βc of the homogeneous hypercubic lattice, the expansion of (dβc) −1 around d = ∞ of the proposed scheme is exact up to the d −4 order, whereas the two latter are exact only up to the d −2 order.
We propose a novel approach to the inverse Ising problem which employs the recently introduced density consistency approximation (DC) to determine the model parameters (couplings and external fields) maximizing the likelihood of given empirical data. This method allows for closed-form expressions of the inferred parameters as a function of the first and second empirical moments. Such expressions have a similar structure to the small-correlation expansion derived in reference Sessak and Monasson (2009 J. Phys. A: Math. Theor. 42 055001), of which they provide an improvement in the case of non-zero magnetization at low temperatures, as well as in presence of random external fields. The present work provides an extensive comparison with most common inference methods used to reconstruct the model parameters in several regimes, i.e. by varying both the network topology and the distribution of fields and couplings. The comparison shows that no method is uniformly better than every other one, but DC appears nevertheless as one of the most accurate and reliable approaches to infer couplings and fields from first and second moments in a significant range of parameters.
Estimating observables from conditioned dynamics is typically computationally hard. While obtaining independent samples efficiently from unconditioned dynamics is usually feasible, most of them do not satisfy the imposed conditions and must be discarded.On the other hand, conditioning breaks the causal properties of the dynamics, which ultimately renders the sampling of the conditioned dynamics non-trivial and inefficient. In this work, a Causal Variational Approach is proposed, as an approximate method to generate independent samples from a conditioned distribution. The procedure relies on learning the parameters of a generalized dynamical model that optimally describes the conditioned distribution in a variational sense. The outcome is an effective and unconditioned dynamical model from which one can trivially obtain independent samples, effectively restoring the causality of the conditioned dynamics. The consequences are twofold: the method allows one to efficiently compute observables from the conditioned dynamics by averaging over independent samples; moreover, it provides an effective unconditioned distribution that is easy to interpret. This approximation can be applied virtually to any dynamics. The application of the method to epidemic inference is discussed in detail. The results of direct comparison with state-of-the-art inference methods, including the soft-margin approach and mean-field methods, are promising.
Estimating observables from conditioned dynamics is typically computationally hard. While obtaining independent samples efficiently from unconditioned dynamics is usually feasible, most of them do not satisfy the imposed conditions and must be discarded. On the other hand, conditioning breaks the causal properties of the dynamics, which ultimately renders the sampling of the conditioned dynamics non-trivial and inefficient. In this work, a Causal Variational Approach is proposed, as an approximate method to generate independent samples from a conditioned distribution. The procedure relies on learning the parameters of a generalized dynamical model that optimally describes the conditioned distribution in a variational sense. The outcome is an effective and unconditioned dynamical model from which one can trivially obtain independent samples, effectively restoring the causality of the conditioned dynamics. The consequences are twofold: the method allows one to efficiently compute observables from the conditioned dynamics by averaging over independent samples; moreover, it provides an effective unconditioned distribution that is easy to interpret. This approximation can be applied virtually to any dynamics. The application of the method to epidemic inference is discussed in detail. The results of direct comparison with state-of-the-art inference methods, including the soft-margin approach and mean-field methods, are promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.