Lean burn spark ignition (SI) engines represent an effective solution for improving fuel economy and reducing exhaust emissions and can be implemented both in conventional and hybrid powertrains. On the other hand, lean operation increases cyclic variability with negative impact on power output, engine efficiency, roughness, and operating stability. Although this phenomenon has been widely investigated, the effects of flow field on the inception and development of flames in direct injection spark ignition (DISI) engines under lean burn conditions is not yet completely understood. In particular, the effect of spark plug geometry and electrode orientation with respect to tumble motion has been minimally investigated. For these reasons, two different spark-plug geometries (i.e., single- and double-ground electrode) and three different orientations (i.e., cross-, counter-, and uni-flow with respect to the direction of tumble motion) were investigated in an optically accessible DISI engine for understanding their influence on the initial phase of combustion. The relative air–fuel ratio (AFRrel) was changed from stoichiometric to lean burn (1.00 to 1.30) for different spark timings around the maximum brake torque setting at fixed engine speed (2000 rpm). An image processing procedure was developed for evaluating the morphological parameters of flame kernels and studying the effects of spark plug design on engine operating stability. With a focus on the correlation between the position where ignition occurs with the subsequent locations of the flame kernel during the first phases of the combustion process, the analysis allowed the gathering of a better understanding of the influence that the electrodes’ geometries and orientation can have on the first stages of combustion development.
The intake manifold and its components play a key role in the proper formation of air–fuel mixtures suitable for correct engine operation. In this article, starting from the original intake manifold design fitted to an optically accessible spark-ignited engine, a new solution was developed so as to allow the application of high-speed imaging of the fuel jet located between the runner and intake valves (Port Fuel Injection). To compare the two designs in terms of overall engine performance parameters such as volumetric efficiency, 0D/1D simulations were performed in motored conditions. Measurements at different crankshaft speed values were used for calibrating the intake line parameters and providing boundary conditions. Finite Element Analysis (FEM) was performed in SolidWorks to verify the structural strength of the new design when operating in the most critical conditions, i.e., boosted operation. As an overall conclusion, the results show that the new design guarantees a wider range of intake pressure values during the intake stroke, thus expanding the possible operative points. This can be obtained without compromising structural integrity, given that predicted safety factors were well above acceptable limits even for relatively high boost levels.
Spark ignition (SI) and subsequent flame front development exert a significant influence on cyclic variability of internal combustion engines (ICEs). The increasing exploitation of lean air-fuel mixtures in SI engines to lower fuel consumption and CO2 emissions is driving the scientific community towards the search for innovative combustion strategies. Moreover, although lean combustion has been widely investigated and an important number of studies is already present in literature, the high cyclic variability typical of this combustion process still represents a major hinder to its exploitation. This study aims to investigate the effects of increasing ignition energy on combustion characteristics of lean mixtures. Tests were performed on an optically accessible gasoline direct injection (GDI) engine that allowed to investigate the correlation between the thermodynamic results and spark arc-flame morphology. Engine speed was fixed at 2000 rpm, a relative air fuel ratio (AFRrel) of about 1.3 was selected and ignition timing was set at 12 crank angle degrees (CAD) bTDC. Coil charge duration was swept from 10 to 40 CAD. Two intake pressure levels were investigated, the first corresponding to wide open throttle under naturally aspirated operating mode, the second with an intake pressure of 1.2 bar, thus corresponding to a boosted operating condition. Two dedicated scripts built using NI Vision were employed for image processing, allowing the evaluation of temporal and spatial evolution of the early stages of combustion. Arc elongation and flame front contour were used as correlation parameters that characterize flame kernel inception and development. The results confirm that, as expected, the increase of the coil charge duration tends to reduce cyclic variability in terms of engine output. The optical investigations revealed that for both examined cases the standard deviation related to the wrinkling effect on flame edge at CA5 decreased as the coil charge duration increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.