Flowering time is a fundamental quantitative trait in maize that has played a key role in the postdomestication process and the adaptation to a wide range of climatic conditions. Flowering time has been intensively studied and recent QTL mapping results based on diverse founders suggest that the genetic architecture underlying this trait is mainly based on numerous small-effect QTL. Here, we used a population of 684 progenies from five connected families to investigate the genetic architecture of flowering time in elite maize. We used a joint analysis and identified nine main effect QTL explaining approximately 50 % of the genotypic variation of the trait. The QTL effects were small compared with the observed phenotypic variation and showed strong differences between families. We detected no epistasis with the genetic background but four digenic epistatic interactions in a full 2-dimensional genome scan. Our results suggest that flowering time in elite maize is mainly controlled by main effect QTL with rather small effects but that epistasis may also contribute to the genetic architecture of the trait.
Family mapping is based on multiple segregating families and is becoming increasingly popular because of its advantages over population mapping. Athough much progress has been made recently, the optimum design and allocation of resources for family mapping remains unclear. Here, we addressed these issues using a simulation study, resample model averaging and cross-validation approaches. Our results show that in family mapping, the predictive power and the accuracy of quatitative trait loci (QTL) detection depend greatly on the population size and phenotyping intensity. With small population sizes or few test environments, QTL results become unreliable and are hampered by a large bias in the estimation of the proportion of genotypic variance explained by the detected QTL. In addition, we observed that even though good results can be achieved with low marker densities, no plateau is reached with our full marker complement. This suggests that higher quality results could be achieved with greater marker densities or sequence data, which will be available in the near future for many species.
Detection of QTL in multiple segregating families possesses many advantages over the classical QTL mapping in biparental populations. It has thus become increasingly popular, and different biometrical approaches are available to analyze such data sets. We empirically compared an approach based on linkage mapping methodology with an association mapping approach. To this end, we used a large population of 788 elite maize lines derived from six biparental families genotyped with 857 SNP markers. In addition, we constructed genetic maps with reduced marker densities to assess the dependency of the performance of both mapping approaches on the marker density. We used cross-validation and resample model averaging and found that while association mapping performed better under high marker densities, this was reversed under low marker densities. In addition to main effect QTL, we also detected epistatic interactions. Our results suggest that both approaches will profit from a further increase in marker density and that a cross-validation should be applied irrespective of the biometrical approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.