Despite the large diffusion and use of embedding generated through Word2Vec, there are still many open questions about the reasons for its results and about its real capabilities. In particular, to our knowledge, no author seems to have analysed in detail how learning may be affected by the various choices of hyperparameters. In this work, we try to shed some light on various issues focusing on a typical dataset. It is shown that the learning rate prevents the exact mapping of the co-occurrence matrix, that Word2Vec is unable to learn syntactic relationships, and that it does not suffer from the problem of overfitting. Furthermore, through the creation of an ad-hoc network, it is also shown how it is possible to improve Word2Vec directly on the analogies, obtaining very high accuracy without damaging the pre-existing embedding. This analogy-enhanced Word2Vec may be convenient in various NLP scenarios, but it is used here as an optimal starting point to evaluate the limits of Word2Vec.
Bayesian networks in their Factor Graph Reduced Normal Form are a powerful paradigm for implementing inference graphs. Unfortunately, the computational and memory costs of these networks may be considerable even for relatively small networks, and this is one of the main reasons why these structures have often been underused in practice. In this work, through a detailed algorithmic and structural analysis, various solutions for cost reduction are proposed. Moreover, an online version of the classic batch learning algorithm is also analysed, showing very similar results in an unsupervised context but with much better performance; which may be essential if multi-level structures are to be built. The solutions proposed, together with the possible online learning algorithm, are included in a C++ library that is quite efficient, especially if compared to the direct use of the well-known sum-product and Maximum Likelihood algorithms. The results obtained are discussed with particular reference to a Latent Variable Model structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.