Abstract. The taxonomical and trophic structures of the vagile fauna communities of the leaf stratum in a Posidonia oceanica meadow at Ischia (Gulf of Naples, Italy) were investigated at five stations along a depth gradient (1 to 25 m). Sampling was performed in July, November, February, and May. The analyzed groups ‐ polychaetes, molluscs, tanaids, isopods, amphipods, and decapods ‐ exhibited similar distributional trends in all seasons, with coenotic discontinuities occurring at well‐defined depths. The same zonation pattern was produced by feeding‐guild analysis. Eleven trophic groups were identified. The most abundant groups were: Herbivores, which were found mainly at the shallow stations; Herbivores‐deposit feeders, which were widely distributed along the transect; Deposit feeders‐carnivores, found mainly at the deep stations.
This study suggests that in the Posidonia leaf stratum, herbivores and herbivores‐deposit feeders, as consumers of epiphytic micro‐ and macroflora and deposited particulate organic matter, play an important role in the energy transfer from producers to higher trophic levels of the system.
Marine bioconstructions are biodiversity-rich, three-dimensional biogenic structures, regulating key ecological functions of benthic ecosystems worldwide. Tropical coral reefs are outstanding for their beauty, diversity and complexity, but analogous types of bioconstructions are also present in temperate seas. The main bioconstructions in the Mediterranean Sea are represented by coralligenous formations, vermetid reefs, deep-sea cold-water corals, Lithophyllum byssoides trottoirs, coral banks formed by the shallow-water corals Cladocora caespitosa or Astroides calycularis, and sabellariid or serpulid worm reefs. Bioconstructions change the morphological and chemicophysical features of primary substrates and create new habitats for a large variety of organisms, playing pivotal roles in ecosystem functioning. In spite of their importance, Mediterranean bioconstructions have not received the same attention that tropical coral reefs have, and the knowledge of their biology, ecology and distribution is still fragmentary. All existing data about the spatial distribution of Italian bioconstructions have been collected, together with information about their growth patterns, dynamics and connectivity. The degradation of these habitats as a consequence of anthropogenic pressures (pollution, organic enrichment, fishery, coastal development, direct physical disturbance), climate change and the spread of invasive species was also investigated. The study of bioconstructions requires a holistic approach leading to a better understanding of their ecology and the application of more insightful management and conservation measures at basin scale, within ecologically coherent units based on connectivity: the cells of ecosystem functioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.