Force–torque sensors are used in many and different domains (i.e., space, medicine, biology, etc.). Design solutions of force–torque sensors can be conceived by using many types of connections or components; however, there are only a few sensors designed using cable-driven systems. This could be related to many reasons, one of which being that cables are able only to pull and not push. In this paper, a new cable-driven model for under-actuated force–torque sensing mechanisms is proposed, simulated, and tested, underlining the novelty of using cables for force–torque sensing. Analytical formulations, simulations, and physical implementations are presented in this paper. Results confirm that the new proposed model can be used for force–torque sensing mechanisms in micro- and macro- applications where under-actuation is a fundamental requirement, as in robotic surgery. The proposed model and mechanism can be used in the design of sensors and actuators. The innovative model is validated with two different test benches, opening new challenges in the design and development of under-actuated force–torque transducers.
This work shows the accomplishment of a full integration of a biomimetic 2x2 tactile array and related electronics in an artificial fingertip. The technological approach is based on merging 3D MEMS sensors and skin-like artificial materials that are moulded mimicking human epidermal ridges. Experimental results using a mechatronic tactile stimulator for indenting periodic gratings (spatial periodicity from 400 μm to 1900 μm) and sliding them at constant speeds (from 5 mm/s to 40 mm/s) under regulated normal contact forces (between 100 mN and 400 mN) show that the developed sensing technology is suitable for fine roughness encoding: a frequency shift of the principal spectral component arising from sensor outputs was observed coherently with the spatial periodicity of the used ridged stimuli and their sliding velocity. Such phenomenon is pointed out with fine gratings particularly when the stimulation is operated along the proximal-distal direction of the finger (i.e. with sliding motion of the ridges of the stimulus across the ridges of the packaging) showing a more marked frequency locked behavior if compared to the radialulnar stimulation (i.e. with sliding motion of the ridges of the grating along the ridges of the packaging).Manuscript received July 31, 2009. This study was funded by the NANOBIOTACT project (EU-FP6-NMP-033287).C. M. Oddo is with the ARTS Lab
The paper presents a creative design approach focused at simplifying the control of biped humanoid robots locomotion in a domestic scenario. The creative design approach is the result of intensive studies aimed at optimizing dynamic balance ZMP-based control on fully-actuated biped platforms. The innovative solution proposed in this paper is applied to the realization of a novel humanoid robot, ROLLO, which is based on the implementation of a passive flexible structure constituting the robotic legs, and of wheeled feet. The unconventional use of the cylindrical helical springs in the flexible structure of the legs allows obtaining a biped robot able to achieve an alternate leg motion having only two active motors and remaining in a standing position also when the motors are not active.
The paper deals with the problem of designing tactile sensors for underwater applications. The tactile sensors are used in many terrestrial applications, but research in underwater tactile perception remains limited because of the scarcity of underwater tactile sensors. In this paper the authors, after a review on underwater sensors available in commerce and in literature, propose a conceptual design of novel tactile sensors for underwater applications. The investigations are performed in collaboration with a national Italian project named MARIS regarding the possible extension to the underwater field of the technologies developed for a terrestrial use, within the European project ROBOSKIN
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.