Multicomponent reactions (MCRs) have emerged as a powerful strategy in synthetic organic chemistry due to their widespread applications in drug discovery and development. MCRs are flexible transformations in which three or more substrates react to form structurally complex products with high atomic efficiency. They are being increasingly appreciated as a highly exploratory and evolutionary tool by the medicinal chemistry community, opening the door to more sustainable, cost-effective and rapid synthesis of biologically active molecules. In recent years, MCR-based synthetic strategies have found extensive application in the field of drug discovery, and several anticancer drugs have been synthesized through MCRs. In this review, we present an overview of representative and recent literature examples documenting different approaches and applications of MCRs in the development of new anticancer drugs.
A plethora of different electronic and optoelectronic devices have been developed lately, for biosensing applications (e.g., label‐free, fast, and easier to operate) based on a detecting interface accommodating the biorecognition elements, anchored by thiolate self‐assembled monolayers (SAMs) on a gold surface. Here, a surface plasmon resonance (SPR) characterization of anti‐p24 anchored on different SAMs is performed to investigate the effect of the SAM structure on the antibodies’ packing efficiency and the sensors’ analytical figures of merit. Notably, the mixed SAM deposited from a solution 10:1 of 3‐mercaptopropionic acid and 11‐mercaptoundecanoic acid (11MUA) is compared to that resulting from a solution 10:1 of ad hoc synthesized N‐(2‐hydroxyethyl)‐3‐mercaptopropanamide (NMPA)/11MUA. Despite the improvement in the anti‐p24 surface coverage registered using the 11MUA/NMPA SAM, the latter produces a significant decrease in the antibodies’ binding efficiency against human immunodeficiency virus p24 protein. To provide a molecular rationale behind the SPR data, density functional theory calculations are also undertaken. A comprehensive physical view of the main competing phenomena affecting the biorecognition events at a biofunctionalized gold detecting interface is represented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.