Increased chemosensitivity to both hypoxia and hypercapnia, eliciting neurohormonal derangement, ventilation instability, and ventricular arrhythmias, is a very serious adverse prognostic marker in HF.
Mild AD significantly impaired simulated driving fitness, while MCI limitedly affected driving performance. Unsafe driving behaviour in AD patients was not predicted by MMSE scores.
In systolic HF patients, CAs occurred throughout a 24-h period and were associated with a neurohormonal activation, ventricular arrhythmic burden, and worse prognosis.
Increased chemosensitivity to hypoxia and hypercapnia, together with a prolonged circulatory time, are the main determinants of Cheyne-Stokes (C-S) respiration in heart failure. To evaluate the effect of acetazolamide, a carbonic anhydrase inhibitor, on chemosensitivity and respiratory dynamics in patients with heart failure with C-S respiration, 12 patients (mean age 62 ± 9 years, mean left ventricular ejection fraction 24 ± 9%) and C-S respiration (mean apnea-hypopnea index 23 ± 13) who underwent 4 consecutive days of oral acetazolamide treatment (250 mg twice daily) were enrolled in this study. Assessment of chemosensitivity to hypoxia and hypercapnia, cardiopulmonary stress testing, 24-hour cardiorespiratory polygraphy, and neurohormonal characterization were performed at baseline and at the end of treatment. Acetazolamide improved central apneas (apnea-hypopnea index 23 ± 13 to 15 ± 9, p = 0.012) and the percentage of time spent below an arterial oxyhemoglobin saturation of 90% (16 ± 23% to 10 ± 18%, p = 0.005). Chemosensitivity to hypoxia was blunted (1.03 ± 0.69 to 0.78 ± 0.55 L/min/mm Hg, p = 0.032), while chemosensitivity to hypercapnia increased after acetazolamide (1.27 ± 0.71 to 1.54 ± 0.78 L/min/% arterial oxygen saturation, p = 0.023); patients achieved a lower workload (90 ± 30 to 81 ± 30 W, p <0.001), with no differences in peak oxygen consumption, while there was an increment in the regression slope relating minute ventilation to carbon dioxide output (39 ± 10 to 43 ± 9, p = 0.010). In conclusion, in patients with heart failure, acetazolamide diminishes C-S respiration and improves oxyhemoglobin saturation, likely by decreasing chemosensitivity to hypoxia. However, it is associated with reduced maximal workload achieved during effort and increased chemosensitivity to hypercapnia, inducing a reduction in the ventilatory efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.