The structure and evolution of the low‐level jet over the Orinoco River basin is characterized using finer horizontal, vertical, and temporal resolution than possible in previous studies via dynamical downscaling. The investigation relies on a 5‐month‐long simulation (November 2013 to March 2014) performed with the Weather Research and Forecasting model, with initial and boundary conditions provided by the Global Forecast System analysis. Dynamical downscaling is demonstrated to be an effective method to better resolve the horizontal and vertical characteristics of the Orinoco low‐level jet (OLLJ), improving not only the representation of small‐scale jet streaks within the broader region of low‐level wind enhancement but also its diurnal and austral‐summer evolution. The OLLJ is found to be a single stream tube over Colombia and Venezuela with wind speeds greater than 8 m/s and four distinctive cores varying in height under the influence of sloping terrain. The OLLJ has its maximum monthly mean wind speed (13 m/s) and largest spatial extent (2,100 km × 400 km) in January. The maximum mean wind speeds (13–17 m/s) in the diurnal cycle occur in the early morning, whereas wind speeds are a minimum (8–9 m/s) in the late afternoon when a deep, convective boundary layer is present. The intraseasonal variability of the wind speed and potential temperature only presents significant periodicity in the diurnal and semidiurnal scales, with no other meaningful cycles evident during the austral summer.
The Orinoco low‐level jet (OLLJ) is characterized using finer horizontal, vertical, and temporal resolution than possible in previous studies via dynamical downscaling. The investigation relies on a 5‐month‐long simulation (November 2013 to March 2014) performed with the Weather Research and Forecasting (WRF) model, with initial and boundary conditions provided by the Global Forecast System (GFS) analysis. Dynamical downscaling is demonstrated to be an effective method not only to better resolve the horizontal and vertical characteristics of the OLLJ but also to determine the mechanisms leading to its formation. The OLLJ is a single stream tube over Colombia and Venezuela with wind speeds greater than 8 m s−1 and four distinctive cores of higher wind speeds varying in height under the influence of sloping terrain. It is an austral summer phenomenon that exhibits its seasonal maximum wind speed and largest spatial extent (2,100 km × 450 km) in January. The maximum diurnal mean wind speeds (13–17 m s−1) at each core location occur at different times during the night and early morning (2300–0900 LST). The momentum balance analysis in a natural coordinate system reveals that the OLLJ results from four phenomena acting together to accelerate the wind: a sea breeze penetration, katabatic flow, three expansion fans, and diurnal variation of turbulent diffusivity. The latter, in contrast to the heavily studied nocturnal low‐level jet in the U.S. Great Plains region, plays a secondary role in OLLJ acceleration. These results imply that LLJs near the equator may originate from processes other than the inertial oscillation and topographic thermal forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.