In Ultrasound (US) imaging, Delay and Sum (DAS) is the most common beamformer, but it leads to low quality images. Delay Multiply and Sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from level of sidelobes and low noise suppression. In this paper, a novel beamforming algorithm is introduced based on the expansion of DMAS formula. It is shown that there is a DAS algebra inside the expansion, and it is proposed to use DMAS instead of the DAS algebra. The introduced method, namely Double Stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in about 25% lower level of sidelobes compared to DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in Signal-to-Noise Ratio, Full-Width-Half-Maximum and Contrast Ratio, respectively, in comparison with DMAS beamformer.
Antepartum fetal monitoring based on the classical cardiotocography (CTG) is a noninvasive and simple tool for checking fetal status. Its introduction in the clinical routine limited the occurrence of fetal problems leading to a reduction of the precocious child mortality. Nevertheless, very poor indications on fetal pathologies can be inferred from the even automatic CTG analysis methods, which are actually employed. The feeling is that fetal heart rate (FHR) signals and uterine contractions carry much more information on fetal state than is usually extracted by classical analysis methods. In particular, FHR signal contains indications about the neural development of the fetus. However, the methods actually adopted for judging a CTG trace as "abnormal" give weak predictive indications about fetal dangers. We propose a new methodological approach for the CTG monitoring, based on a multiparametric FHR analysis, which includes spectral parameters from autoregressive models and nonlinear algorithms (approximate entropy). This preliminary study considers 14 normal fetuses, eight cases of gestational (maternal) diabetes, and 13 intrauterine growth retarded fetuses. A comparison with the traditional time domain analysis is also included. This paper shows that the proposed new parameters are able to separate normal from pathological fetuses. Results constitute the first step for realizing a new clinical classification system for the early diagnosis of most common fetal pathologies.
Cerebellar involvement in cognition, as well as in sensorimotor control, is increasingly recognized and is thought to depend on connections with the cerebral cortex. Anatomical investigations in animals and post-mortem humans have established that cerebro-cerebellar connections are contralateral to each other and include the cerebello-thalamo-cortical (CTC) and cortico-ponto-cerebellar (CPC) pathways. CTC and CPC characterization in humans in vivo is still challenging. Here advanced tractography was combined with quantitative indices to compare CPC to CTC pathways in healthy subjects. Differently to previous studies, our findings reveal that cerebellar cognitive areas are reached by the largest proportion of the reconstructed CPC, supporting the hypothesis that a CTC-CPC loop provides a substrate for cerebro-cerebellar communication during cognitive processing. Amongst the cerebral areas identified using in vivo tractography, in addition to the cerebral motor cortex, major portions of CPC streamlines leave the prefrontal and temporal cortices. These findings are useful since provide MRI-based indications of possible subtending connectivity and, if confirmed, they are going to be a milestone for instructing computational models of brain function. These results, together with further multi-modal investigations, are warranted to provide important cues on how the cerebro-cerebellar loops operate and on how pathologies involving cerebro-cerebellar connectivity are generated.
This paper considers the multiscale entropy (MSE) approach for estimating the regularity of time series at different scales. Sample entropy (SampEn) and approximate entropy (ApEn) are evaluated in MSE analysis on simulated data to enhance the main features of both estimators. We applied the approximate entropy and the sample entropy estimators to fetal heart rate signals on both single and multiple scales for an early identification of fetal sufferance antepartum. Our results show that the ApEn index significantly distinguishes suffering from normal fetuses between the 30th and the 35th week of gestation. Furthermore, our data shows that the MSE entropy values are reliable indicators of the fetal distress associated with the presence of a pathological condition at birth.
There is increasing interest in designing new biomaterials that could potentially be used in the form of scaffolds as bone substitutes. In this study we used a hydrophobic crosslinked polyurethane in a typical tissue-engineering approach, that is, the seeding and in vitro culturing of cells using a porous scaffold. Using an electromagnetic bioreactor (magnetic field intensity, 2 mT; frequency, 75 Hz), we investigated the effect of the electromagnetic stimulation on SAOS-2 human osteoblast proliferation and calcified matrix production. Cell proliferation was twice as high; expression of decorin, osteocalcin, osteopontin, type I collagen, and type III collagen was greater (1.3, 12.2, 12.1, 10.0, and 10.5 times as great, respectively); and calcium deposition was 5 times as great as under static conditions without electromagnetic stimulation. RT-PCR analysis revealed the electromagnetically upregulated transcription specific for decorin, fibronectin, osteocalcin, osteopontin, transforming growth factor-beta, type I collagen, and type III collagen. The immunolocalization of the extracellular matrix constituents showed their colocalization in the cell-rich areas. The bioreactor and the polyurethane foam were designed to obtain cell colonization and calcified matrix deposition. This cultured biomaterial could be used, in clinical applications, as an osteoinductive implant for bone repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.