Contrast agents, such as iron oxide, enhance MR images by altering the relaxation times of tissues in which the agent is present. They can also be used to label targeted molecular imaging probes. Unfortunately, no molecular imaging probe is currently available on the clinical MRI market. A promising platform for MRI contrast agent development is nanotechnology, where superparamagnetic iron oxide nanoparticles (SPIONS) are tailored for MR contrast enhancement, and/or for molecular imaging. SPIONs can be produced using a range of methods and the choice of method will be influenced by the characteristics most important for a particular application. In addition, the ability to attach molecular markers to SPIONS heralds their application in molecular imaging.There are many reviews on SPION synthesis for MRI; however, these tend to be targeted to a chemistry audience. The development of MRI contrast agents attracts experienced researchers from many fields including some researchers with little knowledge of medical imaging or MRI. This situation presents medical radiation practitioners with opportunities for involvement, collaboration or leadership in research depending on their level of commitment and their ability to learn. Medical radiation practitioners already possess a large portion of the understanding, knowledge and skills necessary for involvement in MRI development and molecular imaging. Their expertise in imaging technology, patient care and radiation safety provides them with skills that are directly applicable to research on the development and application of SPIONs and MRI.In this paper we argue that MRI SPIONs, currently limited to major research centres, will have widespread clinical use in the future. We believe that knowledge about this growing area of research provides an opportunity for medical radiation practitioners to enhance their specialised expertise to ensure best practice in a truly multi-disciplinary environment. This review outlines how and why SPIONs can be synthesised and examines their characteristics and limitations in the context of MR imaging.
Cancer has a high incidence and mortality rate worldwide, which continues to grow as millions of people are diagnosed annually. Metastatic disease caused by cancer is largely responsible for the mortality rates, thus early detection of metastatic tumours can improve prognosis. However, a large number of patients will also present with micrometastasis tumours which are often missed, as conventional medical imaging modalities are unable to detect micrometastases due to the lack of specificity and sensitivity. Recent advances in radiochemistry and the development of nucleic acid based targeting molecules, have led to the development of novel agents for use in cancer diagnostics. Monoclonal antibodies may also be used, however, they have inherent issues, such as toxicity, cost, unspecified binding and their clinical use can be controversial. Aptamers are a class of single-stranded RNA or DNA ligands with high specificity, binding affinity and selectivity for a target, which makes them promising for molecular biomarker imaging. Aptamers are presented as being a superior choice over antibodies because of high binding affinity and pH stability, amongst other factors. A number of aptamers directed to cancer cell markers (breast, lung, colon, glioblastoma, melanoma) have been radiolabelled and characterised to date. Further work is ongoing to develop these for clinical applications.
Purpose: To investigate the dosimetric accuracy of the sliding window gated IMRT compared with the static treatment, using varying dose rates.Materials and methods: This study measured changes in output and diode array response with changing dose rate, verified the precision of the motion table, and measured changes in dose distribution accuracy with film and diodes at two depths with changing dose rate. During 4DCT (4 Dimensional Computed Tomography), the patient's respiratory signals and target motion were recorded and imported to the XY4D simulation table of SUN NUCLEAR Corporation to simulate the patient's respiration and tumour motion. A single field of each sliding window IMRT plan with 30º wedge and one for lung cancer were used in this study. Three irradiating conditions, static and moving target with and without gating, were applied to both plans.Results: The standard deviations of output, with the dose rates changing from 300-600 MU/min, were 0.065 cGy and 0.169 cGy for the ionisation chamber and diode, respectively. The verification of the motion table shows very good precision with 9.98 ± 0.02 cm (true value = 10.0 cm). The measurements by MapCheck show the gamma index of the planned absolute dose distribution in static and moving targets with gating, resulting in more than 96% passing for all dose rates. The absolute dose distribution measured by film for the static target was agreeable with the value of moving target with gating. Conclusion:The sliding window gated IMRT technique is able to deliver an accurate dose to a moving target with the dose rate of 300-600 MU/min that is suitable for clinical treatment.
An Interactive electronic Atlas (IeA) was developed to assist first-year nursing students with interpretation of laboratory-based prosected cadaveric material. It was designed, using pedagogically sound principles, as a student-centered resource accessible to students from a wide range of learning backgrounds. It consisted of a highly simplified interactive interface limited to essential anatomical structures and was intended for use in a blended learning situation. The IeA's nine modules mirrored the body systems covered in a Nursing Biosciences course, with each module comprising a maximum of 10 pages using the same template: an image displaying a cadaveric specimen and, in most cases, a corresponding anatomical model with navigation panes (menus) on one side. Cursor movement over the image or clicking the menu highlighted the structure with a transparent overlay and revealed a succinct functional description. The atlas was complemented by a multiple-choice database of nearly 1,000 questions using IeA images. Students' perceptions of usability and utility were measured by survey (n = 115; 57% of the class) revealing mean access of 2.3 times per week during the 12-week semester and a median time of three hours of use. Ratings for usability and utility were high, with means ranging between 4.24 and 4.54 (five-point Likert scale; 5 = strongly agree). Written responses told a similar story for both usability and utility. The role of providing basic computer-assisted learning support for a large first-year class is discussed in the context of current research into student-centered resources and blended learning in human anatomy.
The magnetic resonance cholangiopancreatography (MRCP) examination has all but replaced the diagnostic endoscopic retrograde cholangiopancreatography (ERCP) examination for imaging the biliary tree and pancreatic ducts in many practical aspects of the clinical setting. Despite this increase in popularity, many magnetic resonance imaging (MRI) radiographers still find aspects of the MRCP examination quite challenging. The aim of this tutorial paper is to provide useful technical advice on how to overcome such perceived challenges and thus produce a successful diagnostic MRCP examination. This paper will be of interest to novice MRI radiographers who are at the beginning of their learning curve in MRCP examination. Other MRI radiographers who are interested in practical tips for protocol variations may also find the paper useful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.