ProNGF, the precursor of mature nerve growth factor (NGF), is the most abundant form of NGF in the brain. ProNGF and mature NGF differ significantly in their receptor interaction properties and in their bioactivity. ProNGF increases markedly in the cortex of Alzheimer's disease (AD) brains and proNGF\NGF imbalance has been postulated to play a role in neurodegeneration. However, a direct proof for a causal link between increased proNGF and AD neurodegeneration is lacking. In order to evaluate the consequences of increased levels of proNGF in the postnatal brain, transgenic mice expressing a furin cleavage-resistant form of proNGF, under the control of the neuron-specific mouse Thy1.2 promoter, were derived and characterized. Different transgenic lines displayed a phenotypic gradient of neurodegenerative severity features. We focused the analysis on the two lines TgproNGF#3 and TgproNGF#72, which shared learning and memory impairments in behavioral tests, cholinergic deficit and increased Ab-peptide immunoreactivity. In addition, TgproNGF#3 mice developed Ab oligomer immunoreactivity, as well as late diffuse astrocytosis. Both TgproNGF lines also display electrophysiological alterations related to spontaneous epileptic-like events. The results provide direct evidence that alterations in the proNGF/NGF balance in the adult brain can be an upstream driver of neurodegeneration, contributing to a circular loop linking alterations of proNGF/NGF equilibrium to excitatory/inhibitory synaptic imbalance and amyloid precursor protein (APP) dysmetabolism.
Nerve growth factor (NGF) exerts a trophic, antiapoptotic action on several neuronal targets, including the clonal cell line PC12. In the current study, we demonstrate that withdrawal of this neurotrophin from PC12 differentiated cells causes overproduction of amyloid-β (Aβ) peptides, which are the most toxic protein fragments directly implicated in the development of Alzheimer disease (AD), concomitantly with cell death by apoptosis. Aβ production and apoptotic death, occurring after withdrawal from NGF-differentiated PC12 cells, are completely inhibited by βand γ-secretase inhibitors and by antibodies directed against Aβ peptides, favouring maintenance of PC12 morphology and neuritic network. These peptides are partially released and largely deposited as aggregates only soluble with strong detergent treatment generally employed to dissolve senile plaques. Furthermore, partial silencing of APP mRNA, by siRNA, reduces not only the extent of Aβ production but also apoptotic death. Aβ production and apoptosis are also induced in differentiated PC12 cells by kinase inhibitors of Trk-A, the high affinity receptor of NGF and, in this case, the co-incubation with βand γ-secretase inhibitors totally revert apoptosis.
Microglia are the sentinels of the brain but a clear understanding of the factors that modulate their activation in physiological and pathological conditions is still lacking. Here we demonstrate that Nerve Growth Factor (NGF) acts on microglia by steering them toward a neuroprotective and anti‐inflammatory phenotype. We show that microglial cells express functional NGF receptors in vitro and ex vivo. Our transcriptomic analysis reveals how, in primary microglia, NGF treatment leads to a modulation of motility, phagocytosis and degradation pathways. At the functional level, NGF induces an increase in membrane dynamics and macropinocytosis and, in vivo, it activates an outward rectifying current that appears to modulate glutamatergic neurotransmission in nearby neurons. Since microglia are supposed to be a major player in Aβ peptide clearance in the brain, we tested the effects of NGF on its phagocytosis. NGF was shown to promote TrkA‐mediated engulfment of Aβ by microglia, and to enhance its degradation. Additionally, the proinflammatory activation induced by Aβ treatment is counteracted by the concomitant administration of NGF. Moreover, by acting specifically on microglia, NGF protects neurons from the Aβ‐induced loss of dendritic spines and inhibition of long term potentiation. Finally, in an ex‐vivo setup of acute brain slices, we observed a similar increase in Aβ engulfment by microglial cells under the influence of NGF. Our work substantiates a role for NGF in the regulation of microglial homeostatic activities and points toward this neurotrophin as a neuroprotective agent in Aβ accumulation pathologies, via its anti‐inflammatory activity on microglia.
Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance.
Synapses are ultrastructural sites for memory storage in brain, and synaptic damage is the best pathologic correlate of cognitive decline in Alzheimer's disease (AD). Post-translational hyperphosphorylation, enzyme-mediated truncation, conformational modifications, and aggregation of tau protein into neurofibrillary tangles (NFTs) are hallmarks for a heterogeneous group of neurodegenerative disorders, so-called tauopathies. AD is a secondary tauopathy since it is pathologically distinguished by the presence of amyloid-beta (Abeta)-containing senile plaques and the presence of tau-positive NFTs in the neocortex and hippocampus. Here, we report that a 20-22 kDa NH2-truncated tau fragment is largely enriched in human mitochondria from cryopreserved synaptosomes of AD brains and that its amount in terminal fields correlates with the pathological synaptic changes and with the organelle functional impairment. This NH2-truncated tau form is also found in other human, not AD-tauopathies, while its presence in AD patients is linked to Abeta multimeric species and likely to pathology severity. Finally native, patient-derived, Abeta oligomers-enriched extracts likely impair the mitochondrial function by the in vitro production of 20-22 kDa NH2-tau fragments in mature human SY5Y and in rat hippocampal neurons. Thus our findings suggest that the mitochondrial NH2-derived tau peptide distribution may exacerbate the synapse degeneration occurring in tauopathies, including AD, and sustain the in vivo NH-2 tau cleavage inhibitors as an alternative drug discovery strategies for AD therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.