The electric solar wind sail (E-sail) is a space propulsion concept that uses the natural solar wind dynamic pressure for producing spacecraft thrust. In its baseline form, the E-sail consists of a number of long, thin, conducting, and centrifugally stretched tethers, which are kept in a high positive potential by an onboard electron gun. The concept gains its efficiency from the fact that the effective sail area, i.e., the potential structure of the tethers, can be millions of times larger than the physical area of the thin tethers wires, which offsets the fact that the dynamic pressure of the solar wind is very weak. Indeed, according to the most recent published estimates, an E-sail of 1 N thrust and 100 kg mass could be built in the rather near future, providing a revolutionary level of propulsive performance (specific acceleration) for travel in the solar system. Here we give a review of the ongoing technical development work of the E-sail, covering tether construction, overall mechanical design alternatives, guidance and navigation strategies, and dynamical and orbital simulations.
An electric sail uses the solar wind dynamic pressure to produce a small but continuous thrust by interacting with an electric field generated around a number of charged tethers. Because of the weakness of the solar wind dynamic\ud\ud
pressure, quantifiable in about 2 nPa at Earth’s distance from the sun, the required tether length is of the order of some kilometers. Equipping a 100-kg spacecraft with 100 of such tethers, each one being of 10-km length, is sufficient\ud\ud
to obtain a spacecraft acceleration of about 1 mm/s^2. These values render the electric sail a potentially competitive\ud\ud
propulsion means for future mission applications. The aim of this paper is to provide a preliminary analysis of the\ud\ud
electric sail performance and to investigate the capabilities of this propulsion system in performing interplanetary\ud\ud
missions. To this end, the minimum-time rendezvous/transfer problem between circular and coplanar orbits is considered, and an optimal steering law is found using an indirect approach. The main differences between electric sail and solar sail performances are also emphasized
An electric sail is capable of guaranteeing the fulfilment of a class of trajectories that would be otherwise unfeasible through conventional propulsion systems. In particular, the aim of this paper is to analyze the electric sail capabilities of generating a class of displaced non-Keplerian orbits, useful for the observation of the Sun's polar regions. These orbits are characterized through their physical parameters (orbital period and solar distance) and the spacecraft propulsion capabilities. A comparison with a solar sail is made to highlight which of the two systems is more convenient for a given mission scenario. The optimal (minimum time) transfer trajectories towards the displaced orbits are found with an indirect approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.