The existence of infinitely many solutions for a Sturm-Liouville boundary value problem, under an appropriate oscillating behavior of the possibly discontinuous nonlinear term, is obtained. Several special cases and consequences are pointed out and some examples are presented. The technical approach is mainly based on a result of infinitely many critical points for locally Lipschitz functions.
This book provides researchers and graduate students with a thorough introduction to the variational analysis of nonlinear problems described by nonlocal operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations, plus their application to various processes arising in the applied sciences. The equations are examined from several viewpoints, with the calculus of variations as the unifying theme. Part I begins the book with some basic facts about fractional Sobolev spaces. Part II is dedicated to the analysis of fractional elliptic problems involving subcritical nonlinearities, via classical variational methods and other novel approaches. Finally, Part III contains a selection of recent results on critical fractional equations. A careful balance is struck between rigorous mathematics and physical applications, allowing readers to see how these diverse topics relate to other important areas, including topology, functional analysis, mathematical physics, and potential theory.
In this paper, we study the existence of multiple ground state solutions for a class of parametric fractional Schrödinger equations whose simplest prototype iswhere n > 2, (− ) s stands for the fractional Laplace operator of order s ∈ (0, 1), and λ is a positive real parameter. The nonlinear term f is assumed to have a superlinear behaviour at the origin and a sublinear decay at infinity. By using variational methods, we establish the existence of a suitable range of positive eigenvalues for which the problem admits at least two nontrivial solutions in a suitable weighted fractional Sobolev space.
Mathematics Subject Classification
In this paper we study the existence of infinitely many weak solutions for equations driven by nonlocal integrodifferential operators with homogeneous Dirichlet boundary conditions. A model for these operators is given by the fractional Laplacianwhere s ∈ (0, 1) is fixed. We consider different superlinear growth assumptions on the nonlinearity, starting from the well-known Ambrosetti-Rabinowitz condition. In this framework we obtain three different results about the existence of infinitely many weak solutions for the problem under consideration, by using the Fountain Theorem. All these theorems extend some classical results for semilinear Laplacian equations to the nonlocal fractional setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.