We present the magnetostratigraphy and stable isotope stratigraphy from an expanded (~430-m-thick) Upper Triassic marine limestone section at Pizzo Mondello, Sicily, and review published biostratigraphic information that can be used to defi ne the location of the conodont Carnian-Norian and Norian-Rhaetian boundaries in this section. Pizzo Mondello offers good potential for magnetostratigraphic correlation of marine biostratigraphic and chemostratigraphic data with the continental Newark astrochronological polarity time scale (APTS) for development of an integrated Late Triassic time scale. The relatively stable average values of δ 18 O centered on 0‰ are a strong indication that the Cherty Limestone at Pizzo Mondello suffered very little diagenetic overprinting. The conodont Carnian-Norian boundary is located 12.5 m above a positive shift of δ 13 C. A statistical approach was applied to evaluate various Pizzo Mondello to Newark magnetostratigraphic correlations. Two correlation options have the highest correlation coeffi cients. In option #1, the base of Pizzo Mondello correlates with the middle part of the Newark APTS, whereas in option #2, the base of Pizzo Mondello starts toward the early part of the Newark APTS. We prefer option #2 in which the Carnian-Norian boundary based on conodonts, as well as its closely associated positive δ 13 C shift, correspond to Newark magnetozone E7 at ca. 228-227 Ma (adopting Newark astrochronology), implying a long Norian with a duration of ~20 m.y., and a Rhaetian of ~6 m.y. duration. These ages are in fact not inconsistent with the few high-quality radiometric dates that are available for Late Triassic time scale calibration. Based on its good exposure, accessibility, stratigraphic thickness and continuity, and multiple chronostratigraphic correlation possibilities, we propose Pizzo Mondello as global stratigraphic section and point for the base of the Norian.
The pre-drift Wegenerian model of Pangea is almost universally accepted, but debate exists on its pre-Jurassic configuration since Ted Irving introduced Pangea 'B' by placing Gondwana farther to the east by V3000 km with respect to Laurasia on the basis of paleomagnetic data. New paleomagnetic data from radiometrically dated Early Permian volcanic rocks from parts of Adria that are tectonically coherent with Africa (Gondwana), integrated with published coeval data from Gondwana and Laurasia, again only from igneous rocks, fully support a Pangea 'B' configuration in the Early Permian. The use of paleomagnetic data strictly from igneous rocks excludes artifacts from sedimentary inclination error as a contributing explanation for Pangea 'B'. The ultimate option to reject Pangea 'B' is to abandon the geocentric axial dipole hypothesis by introducing a significant non-dipole (zonal octupole) component in the Late Paleozoic time-averaged geomagnetic field. We demonstrate, however, by using a dataset consisting entirely of paleomagnetic directions with low inclinations from sampling sites confined to one hemisphere from Gondwana as well as Laurasia that the effects of a zonal octupole field contribution would not explain away the paleomagnetic evidence for Pangea 'B' in the Early Permian. We therefore regard the paleomagnetic evidence for an Early Permian Pangea 'B' as robust. The transformation from Pangea 'B' to Pangea 'A' took place during the Permian because Late Permian paleomagnetic data allow a Pangea 'A' configuration. We therefore review geological evidence from the literature in support of an intra-Pangea dextral megashear system. The transformation occurred after the cooling of the Variscan mega-suture and lasted V20 Myr. In this interval, the Neotethys Ocean opened between India/Arabia and the Cimmerian microcontinents in the east, while widespread lithospheric wrenching and magmatism took place in the west around the Adriatic promontory. The general distribution of plate boundaries and resulting driving forces are qualitatively consistent with a right-lateral shear couple between Gondwana and Laurasia during the Permian. Transcurrent plate boundaries associated with the Pangea transformation reactivated Variscan shear zones and were subsequently exploited by the opening of western Neotethyan seaways in the Jurassic.0012-821X / 03 / $^see front matter ß
A study of quantitative calcareous nannofossil biostratigraphy and magnetostratigraphy of a~68-m-thick marine limestone section of Late Paleocene-Middle Eocene age outcropping at Possagno in northern Italy shows that the section encompasses nannofossil Zones NP9-NP15 (equivalent to CP8-CP13b) and Chrons C24r-C21n. The Paleocene-Eocene boundary was placed at the base a of d 13 C negative excursion from the literature that was found virtually coincident with the base of Zone NP9b. The base of the Middle Eocene (Lutetian) was placed at the base of Chron C21r. Biostratigraphic events were generally found to be consistent with parallel events in recent time scales; several potentially useful new events are also described. In particular, we detected the earliest specimens of Dictyococcites at the base of Chron C22r (NP12-NP13 zonal transition), which is several million years older than previous estimates. Correlation of Possagno data to the oxygen isotope record from the literature allowed us to describe the temporal relationships between climate variability and calcareous nannofossil assemblages. Modifications in the nannofossil assemblage coeval to both the Paleocene-Eocene Thermal Maximum (PETM) and the Early-Middle Eocene long-term climatic trend are recognized. The short-lived PETM was coeval to provisional adaptations (malformations and/or ecophenotypes) in the coccolithophores communities that were reabsorbed upon return to long-term varying climatic conditions. The Early-Middle Eocene long-term climatic trend was instead coeval to true evolutionary trends with the appearance of the very successful Noelaerhabdaceae clade whose offsprings include the most important bloom-forming coccolithophorids in the modern ocean. The Early-Middle Eocene can thus be considered the time in which nannoplankton communities set course toward modern structure triggering a reconfiguration of the global ocean life chain.
Paleomagnetic and cycle stratigraphic analyses of nearly 7000 m of section from continuous cores in the Newark basin and an overlapping 2500 meter-thick composite outcrop and core section in the nearby Hartford basin provide an astrochronostratigraphic polarity time-scale (APTS) for practically the entire Late Triassic (Carnian, Norian and Rhaetian) and the Hettangian and early Sinemurian stages of the Early Jurassic (233 to 199 Ma in toto). Aperiodic magnetic polarity reversals make a distinctive pattern of normal and reverse chrons for correlation, ideally paced by the periodic timing of orbital climate cycles, and anchored to million years ago (Ma) by high-precision U-Pb zircon dates from stratigraphically-constrained basalts of the Central Atlantic Magmatic Province (CAMP). Pinned by the CAMP dates, the Newark-Hartford APTS is calibrated by sixty-six McLaughlin cycles, each a reflection of climate forcing by the long astronomical eccentricity variation with the stable 405 kyr period, from 199.5 to 225.8 Ma and encompassing fifty-one magnetic polarity intervals, making it one of the longest continuous astrochronostratigraphic polarity time-scales available in the Mesozoic and Cenozoic. Extrapolation of sediment accumulation rates in fluvial sediments in the basal Newark section extends the sequence an additional fifteen polarity intervals to 232.7 Ma. The lengths of the 66 polarity chrons vary from 0.011 Myr (Chron E23r) to 1.63 Myr (Chron H24n) with an overall mean duration of 0.53 Myr. The oldest CAMP basalts provide a zircon U-Pb-based estimated age of 201.5 Ma for the base of the stratigraphically superjacent McLaughlin cycle 61 and 201.6 Ma using cycle stratigraphy for the onset of the immediately subjacent Chron E23r. The calibration age of 201.5 Ma for the base of McLaughlin cycle 61 is remarkably consistent with the calculated phase of the 498th long eccentricity cycle counting back using a period of 405 kyr from the most recent peak at 0.216 Ma. Accordingly, we suggest a nomenclature (Ecc405:k, where k is the cycle number or fraction thereof) to unambiguously assign ages from the astrochronostratigraphy. Magnetostratigraphic correlation of key Tethyan sections with diagnostic marine biostratigraphic elements to the Newark-Hartford APTS allows determination of numerical ages of standard marine stages, as follows: 227 Ma for the Carnian/Norian boundary, 205.5 Ma for the Norian/ Rhaetian boundary (using a chemostratigraphic criterion, or about 4 Myr older for alternative criteria), 201.4 Ma for the Triassic/Jurassic boundary, and 199.5 Ma for the Hettangian/Sinemurian boundary. These age estimates are in excellent agreement with available constraints from high-precision U-Pb zircon dating from the Pucara Basin of Peru and along with the presence of the short Chron E23r in several basins argue strongly against suggestions that millions of years of Rhaetian time is missing in a cryptic hiatus or unconformity that supposedly occurs just above Chron E23r in the Newark Supergroup basins. It is more parsimonio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.