In this paper, an optimization technique in aircraft design field, based on game theory and evolutionary algorithms to define the key variables for Multi-Disciplinary aircraft Optimization (MDO) into AGILE (Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts) European project, is presented. This work represents one of the contributions given by UniNa (University of Naples “Federico II”) research group within the AGILE project, which is coordinated by the DLR and funded by EU through the project HORIZON 2020 that aims to create an evolution of MDO, promoting a novel approach based on collaborative remote design and knowledge dissemination among various teams of experts. Since the aircraft design field is very complex in terms of number of involved variables and the dimension of the space of variation, it is not feasible to perform an optimization process on all the design parameters; this leads to the need to reduce the number of the parameters to the most significant ones. A multi-objective optimization approach allows many different variables, which could be a constraint or an objective function for the specific investigation; thus, setting the constraints and objectives to reach, it is possible to perform an optimization process and control which parameters significantly affect the final result. Within AGILE project, UniNa research group aims to perform wing optimization processes in a preliminary design stage, coupling Nash game theory (N) with typical genetic evolutionary algorithm (GA), reducing computational time and allowing a more realistic association among objective functions and variables, to identify the main ones that significantly affect final result and that consequently must be considered by the partners of the AGILE consortium to perform MDO in the final part of project, applying the proposed optimization technique to novel aircraft configuration
Indoor farming of basil (Ocimum basilicum L.) under artificial lighting to support year-round produce demand is an area of increasing interest. Literature data indicate that diverse light regimes differently affect downstream metabolic pathways which influence basil growth, development and metabolism. In this study, basil was grown from seedlings to fully developed plants in a microcosm, an innovative device aimed at growing plants indoor as in natural conditions. Specifically, the effects of white (W) and blue-red (BR) light under a photosynthetic photon flux density of 255 μmol m−2 s−1 on plant growth, photochemistry, soluble nutrient concentration and secondary metabolism were investigated. Plants grew taller (41.8 ± 5.0 vs. 28.4 ± 2.5 cm) and produced greater biomass (150.3 ± 24.2/14.7 ± 2.0 g vs. 116.2 ± 28.3/12.3 ± 2.5 g fresh/dry biomass) under W light compared to BR light. The two lighting conditions differently influenced the soluble nutrient concentration and the translocation rate. No photosynthetic stress was observed under the two lighting regimes, but leaves grown under W light displayed higher levels of maximum quantum yield of PSII and electron transport rate. Sharp differences in metabolic patterns under the two lighting regimes were detected with higher concentrations of phenolic compounds under the BR light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.