Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates TRPV1 through a unique mechanism that is independent of G protein-coupled receptors, contrary to what has been widely shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA binding directly to an ion channel to acutely regulate its function.
The TRPV1 ion channel serves as an integrator of noxious stimuli with its activation linked to pain and neurogenic inflammation. Cholesterol, a major component of cell membranes, modifies the function of several types of ion channels. Here, using measurements of capsaicin-activated currents in excised patches from TRPV1-expressing HEK cells, we show that enrichment with cholesterol, but not its diastereoisomer epicholesterol, markedly decreased wild-type rat TRPV1 currents. Substitutions in the S5 helix, rTRPV1-R579D, and rTRPV1-F582Q, decreased this cholesterol response and rTRPV1-L585I was insensitive to cholesterol addition. Two human TRPV1 variants, with different amino acids at position 585, had different responses to cholesterol with hTRPV1-Ile 585 being insensitive to this molecule. However, hTRPV1-I585L was inhibited by cholesterol addition similar to rTRPV1 with the same S5 sequence. In the absence of capsaicin, cholesterol enrichment also inhibited TRPV1 currents induced by elevated temperature and voltage. These data suggest that there is a cholesterol-binding site in TRPV1 and that the functions of TRPV1 depend on the genetic variant and membrane cholesterol content.
The transient receptor potential (TRP)3 family of ion channels is found throughout the animal kingdom and has been shown to subserve numerous functions. One extensively studied member of this family is the TRPV1 (Vanilloid 1) channel. Structurally, TRPV1 is thought to be a tetramer comprised of subunits each with six transmembrane domains (S1-S6), with the putative pore of the channel located between S5 and S6. It also contains large intracellular amino and carboxyl termini that have been shown to be involved both in channel gating and regulation (for review, see Ref.
Human sperm motility arrest induced by external calcium removal is mediated principally by sodium loading, which would stimulate the Na(+)/K(+)-ATPase and in turn deplete the ATP content.
In the version of this article initially published, the residue numbers indicated in the y-axis labels in Figure 3c were incorrectly written as 24, 53, 55 and 53 from the origin but should have read 24, 52, 53 and 55. The error has been corrected the PDF and HTML versions of this article. corrigenduM research Highlights
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.