Currently, there is a growing interest of industries in applying additive manufacturing (AM) technology for generating objects with high geometrical complexity and low weight, ensuring good performance, comparable to those ones of products realized by means of traditional techniques. Anyway, it is still usual to realize AM products without focusing on the morphology of the object, hence without exploiting all the advantages of the technique. Indeed, since the several suitable AM technologies, it should be useful to know the functional characteristics of the component for the best choice of the appropriate one and its constructive complexity. In this regard, the 3D modeling strategy is extremely crucial for a proper realization of AM products. The paper deals with a study of the geometrical complexity of dashboard components of a car, based on several techniques for evaluating the geometric complexity. The latter is a fundamental element for estimating the feasibility of AM in terms of production costs and the benefits with respect to traditional molding. In detail, the study focuses on comparing several geometrical complexity evaluation techniques in order to identify the one that simplifies the calculation and better approximates the most used in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.