This paper describes the properties and the engineering applications of the smart materials, especially in the mechatronics field. Even though there are several smart materials which all are very interesting from the research perspective, we decide to focus the work on just three of them. The adopted criterion privileges the most promising technologies in terms of commercial applications available on the market, namely: magnetorheological fluids, shape memory alloys and piezoelectric materials. Many semi-active devices such as dampers or brakes or clutches, based on magnetorheological fluids are commercially available; in addition, we can trace several applications of piezo actuators and shape memory-based devices, especially in the field of micro actuations. The work describes the physics behind these three materials and it gives some basic equations to dimension a system based on one of these technologies. The work helps the designer in a first feasibility study for the applications of one of these smart materials inside an industrial context. Moreover, the paper shows a complete survey of the applications of magnetorheological fluids, piezoelectric devices and shape memory alloys that have hit the market, considering industrial, biomedical, civil and automotive field
This work describes the conceptual design, the modelling, the optimization, the detail design and the virtual testing of a shape memory actuator purposely conceived to maximize torque and angular stroke while limiting overall size and electric consumption. The chosen design, achieved by means of a Quality Function Deployment approach, features a fully modular concept in which an arbitrary number of identical modules are assembled to produce the desired angular stroke and output torque. The basic module contains shape memory springs that actuate the device and also a conventional spring that reduces the torque ripple. Following the concept generation stage, a thermo-electromechanical model is developed and a numerical optimization performed, aimed at minimizing the electrical consumption of the actuator. Finally, the device is designed in detail and the actuator is tested virtually. Thanks to the proposed modular construction and the use of a conventional balancing spring, the device shows better performances than known rotary shape memory actuators in terms of rotation, torque and customization.
The availability of engineering strength data on shape memory alloys (SMAs) under cyclic thermal activation (functional fatigue) is central to the rational design of smart actuators based on these materials. Test results on SMAs under functional fatigue are scarce in the technical literature and the few data available are mainly limited to constant-stress loading. Since the SMA elements used within actuators are normally biased by elastic springs or by another SMA element, their stress state is far from constant in operation. The mismatch between actual working conditions and laboratory arrangements leads to suboptimal designs and undermines the prediction of the actuator lifetime. This paper aims at bridging the gap between experiment and reality. Four test procedures are planned, covering most of the typical situations occurring in practice: constant-stress, constant-strain, constant-stress with limited maximum strain and linear stress-strain variation with limited maximum strain. The paper describes the experimental apparatus specifically designed to implement the four loading conditions and presents fatigue results obtained from commercial NiTi wires tested under all those protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.