Climate analyses at a local scale are an essential tool in the field of sustainable development. The evolution of reanalysis datasets and their greater reliability contribute to overcoming the scarcity of observed data in the southern areas of the world. The purpose of this study is to compute the reference monthly values and ranges of maximum and minimum temperatures for the eight main inhabited villages of North Horr Sub-County, in northern Kenya. The official ten-day dataset derived from the Kenyan Meteorological Department (KMD), the monthly datasets derived from the ERA-Interim reanalysis (ERA), the Observational-Reanalysis Hybrid (ORH) and the Climate Limited Area Mode driven by HadG-EM2-ES (HAD) are assessed on a local scale using the most common statistical indices to determine which is more reliable in representing monthly maximum and minimum temperatures. Overall, ORH datasets showed lower biases and errors in representing local temperatures. Through an innovative methodology, a new set of monthly mean temperature values and ranges derived from ORH datasets are calculated for each location in the study area, in order to guarantee to locals an historical benchmark to compare present observations. The findings of this research provide insights for environmental risk management, supporting local populations in reducing their vulnerability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.