Biorefineries are novel, productive models that are aimed at producing biobased alternatives to many fossil-based products. Biomass supply and overall energy consumptions are important issues determining the overall biorefinery sustainability. Low-profit lands appear to be a potential option for the sustainable production of raw materials without competition with the food chain. Cardoon particularly matches these characteristics, thanks to the rapid growth and the economy of the cultivation and harvesting steps. An integrated biorefinery processing 60 kton/y cardoon lignocellulosic biomass for the production of 1,4-butanediol (bio-BDO) is presented and discussed in this work. After designing the biorefinery flowsheet, the mass and energy balances were calculated. The results indicated that the energy recovery system has been designed to almost completely cover the entire energy requirement of the BDO production process. Despite the lower supply of electricity, the energy recovery system can cover around 78% of the total electricity demand. Instead, the thermal energy recovery system was able to satisfy the overall demand of the sugar production process entirely, while BDO purification columns require high-pressure steam. The thermal energy recovery system can cover around 83% of the total thermal demand. Finally, a cradle-to-gate simplified environmental assessment was conducted in order to evaluate the environmental impact of the process in terms of carbon footprint. The carbon footprint value calculated for the entire production process of BDO was 2.82 kgCO2eq/kgBDO. The cultivation phase accounted for 1.94 kgCO2eq/kgBDO, the transport had very little impact, only for 0.067 kgCO2eq/kgBDO, while the biorefinery phase contributes for 0.813 kgCO2eq/kgBDO.
The continuous increase in the mechanization of farm activities, the rise in fuel prices and the environmental aspects concerning gas emissions are the main driving forces behind efforts toward more effective use of renewable energy sources and cogeneration systems even in agricultural and cattle farms. Nevertheless these systems are still not very suitable for this purpose because of their little flexibility in following the changing energy demand as opposed to the extremely various farm load curves, both in daytime and during the year. In heat recovery systems, the available thermal energy supply is always linked to power production, thus it does not usually coincide in time with the heat demand. Hence some form of thermal energy storage (TES) is necessary in order to reach the most effective utilization of the energy source. This study deals with the modelling of a packed bed latent heat TES unit, integrating a cogeneration system made up of a reciprocating engine. The TES unit contains phase change materials (PCMs) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. Water is used as heat transfer fluid (HTF) to transfer heat from the tank to the final uses, and exhausts from the engine are used as thermal source. PCMs are considered especially for their large heat storage capacity and their isothermal behaviour during the phase change processes. Despite their high energy storage density, most of them have an unacceptably low thermal conductivity, hence PCMs encapsulation technique is adopted in order to improve heat transfer. The special modular configuration of heat exchange tubes and the possibility of changing water flow through them allow to obtain the right amount of thermal energy from the tank, according to the hourly demand of the day. The model permits to choose the electrical load of the engine, the dimensions of the tank and the spheres, thickness and diameter of heat exchanger and the nature of PCMs. According to the energy loads of the farm, a daily thermal energy balance is obtained and charging and discharging cycles during the day are showed as solid/ liquid percentages of the PCM. As an example, load curves of a milk cattle farm (100 heads of cattle), were considered in two different conditions, such as in summer and winter seasons, and model functioning was detected in both of the cases. Different PCMs were investigated for this application and TES unit dimensions were consequently changed in order to achieve optimal operating conditions. Results are presented and technical and economical issues are discussed
Biofuels and biochemicals are currently centre stage in the on-going scientific and political debate. The prevalent opinion is that their use can significantly reduce the greenhouse gases (GHGs) emissions and primary energy demand along their whole value chain. This study aims at evaluating the environmental impact in terms of GHGs related to carbon dioxide (CO2) of secondgeneration sugars (2GSs) production from cardoon residual biomass. Cardoon is a favourable crop in Mediterranean areas for its adaptation to cold winters and hot summers as well as its abundant yields. 2GSs are essential in the production of bio-BDO, a high-quality intermediate widely used for producing bioplastics. The whole value chain is considered, from cardoon cultivation to 2GSs production. Transport of raw materials from field to biorefinery is also included. The approach followed for the systematic evaluation of the environmental impact is that of the Life Cycle Assessment (LCA). Since the use of sugars is not considered, a cradle-to-gate analysis is performed. Data on cardoon cultivation refer to a 3-years field experiment conducted at the ENEA Trisaia Research Centre and concern the use of seeding material, fertilizers, water and fuel. Residual biomass is not the only product derived from cardoon cultivation, hence an energy-based allocation procedure is adopted. Transport of raw materials occurs with a 40 t truck on a reference distance of 30 km. A biorefinery plant for 2GSs production is designed. It treats 60,000 t/y residual biomass and returns almost 20,000 t/y sugars. The sustainability of the value chain is measured in terms of kgCO2eq per kg of 2GSs produced. Primary energy demand is computed. Results show that GHGs emissions associated to 1 kg of produced sugars is equal to 5.33 kgCO2eq. The overall installed power amounts to 1,370 kW. As regard electrical and thermal energy, the whole production process demands about 7,890 MWh/y and 191,802 MWh/y respectively. The work falls within the scope of the Rebiochem ® Project funded by the Italian Ministry of Education and Research and coordinated by Novamont S.p.A.
In order to use solar radiation as thermal energy source, heat storage equipments result necessary in each application where continuous supply is required, because of the natural unsteady intensity of radiation during the day. Thermal solar collectors are especially suitable for low temperature applications, since their efficiency decreases when an high inlet temperature of fluid flowing through them is established. On the other hand, low temperatures and low temperature gaps, above all, make very difficult to use traditional sensible heat storing units (water tanks), because of the very large amounts of material required. In this work, a traditional sensible heat storage system is compared with a latent heat storing unit based on phase change materials (PCMs). As a case study, a 840 m3 greenhouse heating application was considered with an inside constant temperature of 18°C. It is thought to be heated by using single layer plate thermal solar collectors as energy source. Inlet temperature of the collectors fluid (HTF) was fixed at 35°C (little higher than melting temperature of PCMs) and a constant flux of 12 l/m2 hour was established as technical usual value. At these conditions, 215m2 solar panels exposed surface resulted necessary. The sensible heat storage system considered here is a traditional water tank storing unit equipped with two pipe coils, respectively for heat exchanges with HTF from collectors and water flux for greenhouse heating. Available DT for heat exchange is estimated as the difference of minimum HTF temperature (in outlet from the collectors) and the required water temperature for greenhouse heating. The latent heat storing unit is instead a series of copper rectangular plate shells which a phase change material is filled in (Na2SO4⋅10H2O). Heat transfer fluids flow through thin channels between adjacent plates, so that a large heat exchange available surface is achieved. The developed computational model (Labview software) permits to superimpose heat exchanges daily curves between heat storing materials and heat transport fluids (for both of the fluids and the heat storing equipments) on the energy supply/demand ones, respectively calculated on the basis of greenhouse energy demand and solar collectors dimensions, characteristics and efficiency. In this manner, units design is achieved by changing thermal energy storing units dimensions, in order that the corresponding heat exchange curves coincide with the previously calculated ones. Successively, among all the possible configurations, the ones showing lower units volumes and less amount of storing materials are chosen as the optimal design solutions. It has been proven that PCMs materials are much more suitable for low temperature applications than sensible heat storing materials (water). In the case of water tank, an about 15.8m3 total volume is required while for PCMs equipment the total volume of storing unit is reduced to about 2.2 m3, such as about seven times total volume less. Besides, according to the simplified and steady state...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.