The purpose of the Economic History Working Papers (Quaderni di Storia economica) is to promote the circulation of preliminary versions of working papers on growth, finance, money, institutions prepared within the Bank of Italy or presented at Bank seminars by external speakers with the aim of stimulating comments and suggestions. The present series substitutes the Historical Research papers -Quaderni dell'Ufficio Ricerche Storiche. The views expressed in the articles are those of the authors and do not involve the responsibility of the Bank.
We investigate secular changes in the distribution of personal expenditure in Italy. To this end we present a new data set, consisting of 4,370 family-level budgets scattered over the years 1881–1961. Our methodology is innovative for this kind of study. Italy's secular trend proves to have been egalitarian, and to have accelerated in periods of fast output growth. Sectoral, residential, and demographic changes associated with “modern economic growth” account for a minor part of the observed changes in expenditure distribution, suggesting that other factors, such as wage differentials, play a dominant role in explaining the dynamics of inequality.
Researchers modeling historical heights have typically relied on the restrictive assumption of a normal distribution, only the mean of which is affected by age, income, nutrition, disease, and similar influences. To avoid these restrictive assumptions, we develop a new semiparametric approach in which covariates are allowed to affect the entire distribution without imposing any parametric shape. We apply our method to a new database of height distributions for Italian provinces, drawn from conscription records, of unprecedented length and geographical disaggregation. Our method allows us to standardize distributions to a single age and calculate moments of the distribution that are comparable through time. Our method also allows us to generate counterfactual distributions for a range of ages, from which we derive age-height profiles. These profiles reveal how the adolescent growth spurt (AGS) distorts the distribution of stature, and they document the earlier and earlier onset of the AGS as living conditions improved over the second half of the nineteenth century. Our new estimates of provincial mean height also reveal a previously unnoticed "regime switch "from regional convergence to divergence in this period.
Researchers modeling historical heights have typically relied on the restrictive assumption of a normal distribution, only the mean of which is affected by age, income, nutrition, disease, and similar infl uences. To avoid these restrictive assumptions, we develop a new semiparametric approach in which covariates are allowed to affect the entire distribution without imposing any parametric shape. We apply our method to a new database of height distributions for Italian provinces, drawn from conscription records, of unprecedented length and geographical disaggregation. Our method allows us to standardize distributions to a single age and calculate moments of the distribution that are comparable through time. Our method also allows us to generate counterfactual distributions for a range of ages, from which we derive age-height profi les. These profi les reveal how the adolescent growth spurt (AGS) distorts the distribution of stature, and they document the earlier and earlier onset of the AGS as living conditions improved over the second half of the nineteenth century. Our new estimates of provincial mean height also reveal a previously unnoticed "regime switch" from regional convergence to divergence in this period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.